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EXECUTIVE SUMMARY

Quantifying pedestrian volumes and levels of walking activity is critical for many
transportation tasks, including pedestrian planning and safety analysis. Because of the limitations
of traditional pedestrian data collection methods (typically short-duration manual counts at a
limited number of locations), direct-demand models of pedestrian volume models—identifying
relationships with built environment characteristics—are becoming more common. Still, direct-
demand models require large quantities of (pedestrian) estimation data in order to be
generalizable beyond the few locations where they were developed, and they are often

insensitive to temporal variations in walking activity.

We overcome these limitations using a novel source of pedestrian data: estimated
pedestrian crossing volumes based on push-button event data recorded in traffic signal controller
logs. Every time a pedestrian push button is pressed in the state of Utah, this activity is recorded,
and UDOT archives these traffic signal pedestrian actuation data for use in its Automated Traffic
Signal Performance Measures (ATSPM) system. A previous UDOT research project developed
methods to estimate pedestrian crossing volumes from pedestrian traffic signal data with
reasonable accuracy. Overall, these continuous data allow us to study more sites (1,494
signalized intersections throughout Utah) over a much longer time period (one year) than in
previous direct-demand models, including the ability to detect variations across days of week and

times of day.

Specifically, we develop direct-demand (log-linear regression) models that represent
relationships between built environment variables (calculated at Y- and ¥2-mile network buffers)
and annual average daily and hourly estimated pedestrian volumes. We test many built
environment variables with empirical and/or theoretical linkages with pedestrian activity. We
also control spatial autocorrelation through the use of spatial error models, and validate our
model results using k-fold cross-validation. To our knowledge, this is the first study to relate

traffic signal-based measures of pedestrian activity with built environment characteristics.

All results confirm theorized relationships: There is more pedestrian activity at

intersections with greater population and employment densities, a larger proportion of



commercial and residential land uses, more connected street networks (with greater intersection
density and percentage of four-way intersections) with greater transit access, more nearby
services and amenities (e.g., parks and schools), and in lower-income neighborhoods with larger
households and fewer vehicles. While several of these findings confirm evidence from previous
research, others—most notably, those related to street network connectivity, specific
destinations, and household income—are relatively novel empirical findings (most past research
has found insignificant or theoretically inconsistent relationships). These findings support the
value of using pedestrian traffic signal data in direct-demand models.

Notably, we also find relevant day-of-week and time-of-day differences in relationships
between pedestrian volumes and measures of the built environment. For example, schools attract
pedestrian activity, but only on weekdays during daytime hours, and the coefficient for places of
worship is higher in the weekend model. Employment density was more closely linked to
pedestrian volumes during weekdays and daytime hours, while population density had a stronger
association during evenings and weekends. K-fold cross-validation results show the stability of
our models. Our application of models to estimate average daily and hourly pedestrian crossing
volumes at over 62,000 unsignalized intersections in Utah shows the predictive power and

applicability of this research.

Results demonstrate the value of these novel pedestrian signal data for planning purposes
and offer support for built environment interventions and land use policies to encourage
walkable communities. We also offer recommendations for using these estimates of pedestrian
volumes for various other important transportation planning and engineering tasks, including
pedestrian safety analysis, multimodal level-of-service calculation, health impact assessment,
pedestrian design and infrastructure prioritization, and joint transportation and land-use planning.
Future research could enrich pedestrian traffic signal data with other data sources (trail counts,
weather data, app- or GPS-based location data) and apply big data processing and machine
learning methods to improve our understanding and modeling of relationships between the built

environment and pedestrian volumes.



1.0 INTRODUCTION

1.1 Problem Statement

Quantifying pedestrian volumes and levels of walking activity is critical for many
transportation planning, engineering, and management tasks. Traffic safety analyses require
estimates of pedestrian exposure to risk, and durations/distances of physically active
transportation are inputs to transportation health impact assessments. Information on walking is
also useful for analyzing pedestrian level/quality of service, designing pedestrian infrastructure,
and prioritizing pedestrian investments. Furthermore, there is a growing interest in creating
active living and walk-friendly communities in order to improve health, reduce automobile

dependence, and strengthen local economies.

Pedestrian volume data can be collected. Nevertheless, traditional data collection
methods for monitoring pedestrian traffic have limitations: They involve short durations, few
locations, or samples of the population. Manual intersection or street segment counts are time
consuming and often infeasible to conduct over long periods of time. Instruments such as
infrared counters can record continuous data on trail users, but they are costly to deploy across
multiple sites (Ryus et al., 2014). The passive collection of crowdsourced pedestrian data from
mobile devices shows promise, but data may be non-representative and require calibration and
factoring methods (StreetLight InSight, 2018). Methods have been developed to adjust short-
duration counts to average pedestrian volumes using factors developed from permanent counters
(FHWA, 2016), but they still usually require manual counts and are sensitive to count duration,

seasonality, and factor group selection.

Alternatively, pedestrian volume data can be modeled. Conventional methods of
modeling roadway volumes are inappropriate for pedestrians, due to data and scale challenges
with including pedestrians in regional travel-demand forecasting models (Singleton et al., 2018).
Instead, planners interested in facility-specific information have turned to using direct-demand
models (Kuzmyak et al., 2014; Munira and Sener, 2017). Direct-demand models predict
pedestrian volumes using observed counts and measures of the surrounding streetscape, land

uses, built environment, and street network. Such models help to understand how environmental



features affect pedestrian volumes and inform transportation and land-use planning and urban
design strategies to promote walkable communities. Still, direct-demand models require large
quantities of (pedestrian) estimation data in order to be generalizable beyond the few locations
where they were developed, and they are often insensitive to temporal variations in walking

activity.

One potential data source that is relatively ubiquitous in both time and space (available
24/7 at many intersections) is the high-resolution data logs from traffic signal controllers. Every
time a pedestrian push button is pressed in the state of Utah, this activity is recorded, and UDOT
archives these traffic signal pedestrian actuation data for use in its Automated Traffic Signal
Performance Measures (ATSPM) system. The use of pedestrian signal data is a potentially rich

source of information about levels of pedestrian activity.

Phase | of this research—Singleton, Runa & Humagain (2020), “Utilizing Archived
Traffic Signal Performance Measures for Pedestrian Planning and Analysis” (UDOT Research
report no. UT-20.17)—developed methods to translate pedestrian traffic signal data into valuable
information on pedestrian volumes at signalized intersections. Singleton et al. (2020) used one
year of data from 1,522 Utah traffic signals and time series clustering to describe patterns of
pedestrian signal activity. Based on these typologies, they randomly selected 90 Utah signals,
used UDOT traffic cameras to record over 10,000 hours of video, and manually counted almost
175,000 pedestrians crossing at the intersections. Using processed hourly pedestrian actuations
and detections from ATSPM data, they estimated five non-linear regression models (segmented
by pedestrian activity, cycle length, and pedestrian recall) using pedestrian signal data to predict
hourly pedestrian crossing volumes. Overall, their estimates were strongly correlated with
observed volumes (0.84) and had a low error (+/- 3.0 on average). These results demonstrated the

validity of using pedestrian data from traffic signals to estimate levels of pedestrian activity.

Phase 11 of this research—the present project—extends the capability of pedestrian
volume estimation to unsignalized intersections. First, direct-demand models of pedestrian
volumes are developed that represent theoretically consistent relationships between pedestrian
crossing volumes and measures of the built environment, land use, and neighborhood

sociodemographics at around 1,500 signalized intersections in Utah. Second, these models are


https://drive.google.com/file/d/1AwLf1DZVw0Vj-btPl5eoWe0UOw9TyFwq/view

applied to additional built environment data to predict pedestrian volumes at over 62,000
unsignalized intersections in Utah. We expect that these volume estimates offer improved

opportunities for pedestrian planning and operations as well as for health and safety analyses.

1.2 Objectives

The objective of this research is to examine relationships between the built environment
and pedestrian activity through the development of direct-demand models of pedestrian volumes,
taking advantage of a novel and relatively ubiquitous (in both time and space) source of
pedestrian data. Specifically, we utilize estimates of pedestrian crossing volumes—taken from
pedestrian push-button activity data from high-resolution traffic signal controller logs—and
apply log-linear regression models for different time periods to study nearly 1,500 signalized
intersections throughout Utah. Our study’s primary contribution is the use of continuously
collected pedestrian activity data from traffic signals (measured over the course of one year, and
averaged per day and per hour) for direct-demand pedestrian volume modeling. Notably, this
allows us to uncover some theoretically consistent built environment relationships with walking
that many other similar studies have not found, and to identify day-of-week and time-of-day

variations in those relationships.

1.3 Scope

This project accomplished this research objective through the following major tasks:

e Reviewing literature on pedestrian volume modeling studies, built environment
predictors of pedestrian volumes, traffic signal-based measures of pedestrian

activity, and direct-demand pedestrian volume modeling.

e Assembling pedestrian data and estimating pedestrian volumes at signalized
intersections, using results from Phase I. This task involved processing of one
year of ATSPM traffic signal data from 1,494 signalized intersections and
applying the factoring methods developed during the Phase | project.



Assembling and preparing geospatial information about signalized and
unsignalized intersections in Utah. This information included local land use and
built environment characteristics (e.g., residential density, businesses, schools,
parks) as well as measures of the adjacent multimodal transportation system (e.g.,
transit service) and neighborhood sociodemographic characteristics (e.qg.,

household income).

Estimating models predicting pedestrian volumes at signalized intersections as a
function of land use, built environment, and transportation system characteristics.
These direct-demand models were log-linear, controlled spatial autocorrelation,

and were segmented by day of the week and time of day.

Applying estimated models to unsignalized intersections and predicting pedestrian
volumes at signalized and unsignalized intersections. This resulted in pedestrian
volume estimates for over 62,000 unsignalized intersections in Utah. Model

validation utilized a 10-fold cross-validation approach.

Developing a prototype online tool and graphical interface to visualize estimated
pedestrian volumes at signalized and unsignalized intersections. This visualization
was an ArcGIS online map showing average estimated pedestrian volumes overall

and for different days of the week and times of day.

Providing recommendations for implementation and future work.

1.4 Outline of Report

This report is organized into the following chapters:

Chapter 1.0 provides an introduction to the research, including the problem
statement, objectives, scope, and outline of the report.

Chapter 2.0 describes the research methods, including a literature review of
pedestrian volume modeling studies, built environment predictors of pedestrian
volumes, and traffic signal-based measures of pedestrian activity, as well as a
description of direct-demand volume modeling.



Chapter 3.0 contains details about the data collection, including estimated
pedestrian volumes from traffic signal data and built environment data.

Chapter 4.0 reports on data evaluation aspects, including results of the direct-
demand models of daily and hourly pedestrian volumes, model validation results,
and model application and visualization.

Chapter 5.0 offers conclusions, including key findings as well as study limitations
and challenges.

Chapter 6.0 provides recommendations for implementation of the findings.



2.0 RESEARCH METHODS

2.1 Overview

This chapter describes the research methods, including a literature review of pedestrian
volume modeling studies, built environment predictors of pedestrian volumes, and traffic signal-
based measures of pedestrian activity, as well as a description of direct-demand volume

modeling.

2.2 Literature Review

Two general threads of research have investigated built environment correlates of
pedestrian counts or volumes. One research path is motivated by developing models to predict
pedestrian demand for use in various transportation engineering, planning, and safety analysis
tasks. For example, Schneider et al. (2009) describe several applications of such models: to
“quantify pedestrian exposure in safety analysis,” prioritize pedestrian projects, design pedestrian
infrastructure, predict pedestrian volumes in the future, analyze crossings warrants, and evaluate
commercial visibility (p. 13). In these studies, built environment characteristics predict
pedestrian counts and are used to estimate pedestrian volumes in areas where data have not been
collected. The other strand of research focuses on understanding relationships between urban
design characteristics and walking activity to inform planning and design for walkable, healthy
cities. These studies often focus on measuring more detailed and complex attributes of urban
form and the built environment, including the so-called “D” variables (e.g., development density,
land-use diversity, street network design, destination accessibility, and distance to transit)
(Ewing and Cervero, 2010), urban design qualities of the streetscape (Ewing and Handy, 2009),
and/or street network connectivity elements derived from Space Syntax (Hillier, 2007). A
simplified characterization is that studies of the first kind focus primarily on pedestrian volumes
and secondarily on built environment measures, while studies of the second kind do the opposite.
Of course, some research straddles the boundaries of the two kinds (Raford and Ragland, 2006,
2004).



Two tables in this section summarize the methods, outcomes, and predictors used in
studies modeling pedestrian volumes as a function of built environment measures. We focus on
studies with models of pedestrian counts or volumes, not on literature using individual- or
household-based measures of walking behavior. We also exclude studies that group walk and

bicycle traffic together into one non-motorized mode.

2.2.1 Pedestrian Volume Modeling Studies

As shown in Table 2-1, most pedestrian volume direct-demand models utilize manually
collected, short-duration counts of the number of people walking along street segments or
crossing at intersections. Sometimes these counts are as short as 30 or even 10 minutes (or
multiple 5-minute counts), but rarely do they exceed 12 hours. These short durations are not
surprising, given the cost and effort of conducting manual pedestrian counts at multiple locations
(Ryus et al., 2014). One exception is the one week of automated pedestrian counts conducted in
Blacksburg, Virginia (Hankey et al., 2017; Lu et al., 2018). For models relating pedestrian
volumes to the built environment, studying many sites is critical for both the power of the
analysis (to detect statistically significant associations) and the generalizability of results (across
varied locations). Most research builds models using data from between several dozen and
several hundred locations. Three exceptions are the 1,018 signals in Montréal (Miranda-Moreno
and Fernandes, 2011), the 1,270 intersections throughout California (Griswold et al., 2019), and
the nearly 10,000 street segments with pedestrian counts in Seoul, South Korea (e.g., Kim et al.,
2019).

Table 2-1: Summary of Pedestrian Volume Modeling Studies

Information Pedestrian Model
Study Geography Locations  Time Outcome Method Details Type Fit
Pushkarev and Manhattan, New <605 block 1969  Volume, AP Twice, WD, L 0.23-
Zupan (1971)  York City, New faces Apr—  instant MD & PM 0.61
York, US Jun
Behnam and Downtown ? street 1971~ Volume, 1 hr MC Multiple LL 0.58
Patel (1977) Milwaukee, segments 1973 times 6 min,
Wisconsin, US Sum WD, DT
Hillier et al. Central London, <239 street  ?? Volume MC 20-30 times, LL 0.29-
(1993) England, UK segments AM & MD & 0.57
PM
Penn et al. Central London, 7 street ?? Volume, 50 MC Tentimes5 CR 0.98
(1998) England, UK segments min min, AM &
MD & PM



Qin and lvan
(2001)

Desyllas et al.
(2003)

Raford and
Ragland (2004)

Liu and
Griswold
(2009)

Miranda-
Moreno et al.
(2011)

Raford and
Ragland (2006)

Pulugurtha and
Repaka (2013,
2008)
Rodriguez et
al. (2009)

Ewing et al.
(2016), Ewing
and Clemente
(2013)

Arnold et al.
(2010)

Hajrasouliha
and Yin (2015)
Hankey et al.
(2012)

Hankey and
Lindsey (2016)

Tabeshian and
Kattan (2014)

Schneider et al.
(2009)

Rural
Connecticut, US

Central London,
England, UK

Oakland,
California, US

San Francisco,
California, US

Montréal,
Quebec, CA

Boston,
Massachusetts,
us

Charlotte, North
Carolina, US

Bogota, Distrito
Capital, CO

New York City,
New York, US

San Diego
County,
California, US

Buffalo, New
York, US
Minneapolis,
Minnesota, US

Minneapolis,
Minnesota, US

Calgary,
Alberta, CA

Alameda
County,
California, US

32 crossings

231 street
segments

42
intersections

63
intersections

519
signalized
intersections
82 locations

176
signalized
intersections
338 street
segments

588 block
faces

80 locations

302 street
segments
259
street/path
segments
471
street/trail
segments

34
intersections

50
intersections

1999
May,
Jun,

Oct,

Nov

1999
Aug,
2000
Mar,
2001

Jul
??

2002
May,
Jun,

Aug,
Sep

2003
Spr—
Sum
2004
Aug

2005

2005
Jun—
Aug
2006
Sum

2007
Jul-
Aug,
2008
2007-
2010
2007-
2010
Sep
2007—
2014
Sep
2007—
2012

2008
Apr—
Jun

Crossing
volume

Volume, 1 hr

Volume, 1
year
(extrapolated)
Crossing
volume

Volume
Volume
Volume, 12 hr

Volume, 10
min

Volume

Volume, 2 hr
(adjusted)
Volume

Volume, 12 hr
(extrapolated)

Volume, 1 hr
Volume, 2 hr

Crossing
volume, 1
week
(extrapolated)

10

MC

MC

MC

MC

MC

MC

MC

MC

MC

MC

MC

MC

MC

MC

MC

Twice 9.5 hr,
WD & WE,
DT

Multiple 5
min, DT

Multiple 2 hr,
WD & WE,
AM & PM
Once 4 hr,
WD, PM

Three times 1
hr, WD, AM
& MD & PM
24 times 5
min, WD &
WE, DT
Once 12 hr,
DT

Once 10 min,
WD, AM

Four times,
WD, DT

Twice 2 hr,
WD & WE,
AM or MD
or PM
Twice, WD,
DT

2 hror 12 hr,
WD, PM or
DT

Various 2 hr,
PM

Three times 2
hr, AM &
MD & PM
Twice 2 hr,
WD & WE,
AM or MD
or PM

LL

27

L, SA

NB

NB, SA

LL

NB

L,P

L

0.81-
0.91

0.82

0.77

0.75

0.55

0.79-

0.86

0.15-
0.86

0.03

)

0.52

7?

0.42

0.50-

0.53

0.79-
0.92

0.89



Miranda- Montréal, 1,018 2008-  Crossing MC Once 8 hr, LL 0.58
Moreno and Quebec, CA signalized 2009  volume WD, AM &
Fernandes intersections MD & PM
(2011)
Ozbil et al. Atlanta, 157 locations ?? Volume MC 20 times (or LL 0.82—
(2011) Georgia, US ten times 20 0.84
min), DT &
PM
Kang (2018,  Seoul, KR <9,850 street 2009  Volume MC Sixtimes 14 LL,SA 0.24-
2017, 2015), segments Aug- hr, WD & 0.81
Kim et al. Nov WE, DT
(2019, 2017),
Sung et al.
(2013, 2015)
Schneider et al. San Francisco, 50 2009  Crossing MC Once 2 hr, LL 0.80
(2012) California, US intersections Sep, volume, 1 WD, AM or
2010  year PM
Jul- (extrapolated)
Aug
Ameli et al. Downtown Salt 179 block 2012  Volume MC Twice 30 NB ??
(2015) Lake City, faces Sep— min, WD,
Utah, US Oct MD & PM
Maxwell Glasgow, 693 street 2014— Volume MC Four times, NB, SA ??
(2016) Scotland, UK segments 2015 WD, DT
Sum
Sandersetal.  Seattle, 49 ?7? Volume, 1 MC 72, PM P 0.76
(2017) Washington, US intersections year
(extrapolated)
Hankey etal.  Blacksburg, 72 locations 2015  Volume, 1 day AC Once 1 wk LL 0.71,
(2017), Luet  Virginia, US Apr— & 1hour 0.00-
al. (2018) Oct (averaged) 0.78
Park et al. Salt Lake 881 block 2015  Volume MC Four times, NB, SA ??
(2019) County, Utah,  faces WD, DT
us
Hamidi and Downtown 402 block 2016  Volume, 30 MC Once 30 min, NB, SA ??
Moazzeni Dallas, Texas, faces Spr- min WD, PM
(2019) us Sum
Le etal. (2020) Dallas, Texas, 196 2016  Volume 1day MC Once2hror NB ??
us intersections (extrapolated) 8 hr
Griswold et al. California, US 1,270 2006— Crossing MC Various 1-86 LL 0.71
(2019) intersections 2016  volume, 1 hr, most two
year times 2 hr,
(extrapolated) AM & PM
Schneider et al. Milwaukee, 260 2013- Crossing MC Various, NB ??
(2021) Wisconsin, US intersections 2018  volume, 1 many 13 hr,
year AM & MD &
(extrapolated) PM
This study Utah, US 1,020 2017  Estimated AC Continuous  LL, SA
signalized Jun—  volume,
intersections 2018 lday &1
Jul hour
(averaged)
Notes: ?? = unknown.

Method: AC = automated counts, AP = aerial photos, MC = manual counts.
Details: WD = weekday, WE = weekend, AM = morning peak, MD = midday, PM = evening peak, DT = daytime.

11



Type: L =linear, LL = log-linear (linear with natural log transformation), CR = linear with cube-root
transformation, P = Poisson, NB = negative binomial,
SA = checked or corrected for spatial autocorrelation.

Fit: R? or pseudo-R?2.

The data collection methods used to obtain pedestrian volumes for most previous
research led to some limitations in the accuracy, generalizability, and sensitivity of model results.
First, the use of short-duration counts to represent average or typical volumes—even when
adjusted for time of day and weather using a smaller number of longer-duration automated
counts—adds measurement error to the dependent variable. This potentially affects the value and
significance of estimated associations. Second, the short time periods typically studied—often
weekdays during daytime or morning/midday/evening peak hours—Iimits the ability of models
to consider temporal variations in relationships between the built environment and pedestrian
volumes. There may be interesting and policy-relevant variations by time of day, day of week
(weekdays vs. weekends), and season. Third, the number of locations studied—usually less than
1,000 and sometimes less than 100—can limit both the generalizability of findings as well as the

statistical power to detect significant associations.

2.2.2 Built Environment Predictors in Pedestrian Volume Modeling Studies

In pedestrian volume models, some built environment measures (see Table 2-2) are
consistently related to walking in expected directions, while results for other variables are more
equivocal. More often than not, studies find positive associations with residential and
employment density. Walking is also closely linked to public transit: Locations closer to transit
stops/stations and with more transit stops nearby tend to see greater pedestrian volumes.
Diversity measures like land-use mix and entropy are sometimes positively related to pedestrian
volumes, but studies also find insignificant or even negative relationships. More studies find null
or unexpectedly negative results than positive results for traditional street network design
variables like intersection density and percentage of four-way intersections. Studies of street
network configurations tend to find positive associations with space syntax measures like
integration. Studies of urban design and streetscape qualities tend to find positive associations
with imageability (the quality of a place that makes it distinct, recognizable and memorable) and

transparency (the degree to which people can see or perceive human activity beyond the edge of

12



a street; Park et al., 2019). A few studies have found that pedestrian volumes are significantly

explained by socioeconomic and environmental variables like household size, household

incomes, parks, and slope.

Table 2-2: Summary of Built Environment Predictors of Pedestrian Volumes

Variable Dir2  Studies
Density
Floor area ratio or + (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hamidi
building density and Moazzeni, 2019; Maxwell, 2016; Ozbil et al., 2011; Park et al., 2019; Sung
etal., 2013)
ns/— (Amelietal., 2015; Kim et al., 2017; Park et al., 2019; Sung et al., 2013)
Population density, + (Ameli et al., 2015; Arnold et al., 2010; Behnam and Patel, 1977; Ewing et al.,
household density, or 2016; Ewing and Clemente, 2013; Griswold et al., 2019; Hankey and Lindsey,
residential space 2016; Hankey et al., 2017; Kim et al., 2019; Liu and Griswold, 2009; Lu et al.,
density 2018; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011;
Ozbil et al., 2011; Pulugurtha and Repaka, 2013, 2008; Raford and Ragland,
2004; Sanders et al., 2017; Schneider et al., 2009, 2012, 2021; Tabeshian and
Kattan, 2014)
ns/—  (Hajrasouliha and Yin, 2015; Hankey et al., 2012; Kang, 2017, 2015; Maxwell,
2016; Qin and Ivan, 2001; Park et al., 2019; Pulugurtha and Repaka, 2013,
2008; Rodriguez et al., 2009)
Employment density, + (Arnold et al., 2010; Behnam and Patel, 1977; Griswold et al., 2019;
employment access, or Hajrasouliha and Yin, 2015; Hankey and Lindsey, 2016; Kang, 2017, 2015;
commercial/office/non- Kimetal., 2019; Liu and Griswold, 2009; Miranda-Moreno et al., 2011;
residential space Miranda-Moreno and Fernandes, 2011; Ozbil et al., 2011; Park et al., 2019;
density Pulugurtha and Repaka, 2013; Pushkarev and Zupan, 1971; Raford and
Ragland, 2004; Sanders et al., 2017; Schneider et al., 2009, 2012, 2021; Sung
et al., 2013; Tabeshian and Kattan, 2014)
ns/— (Hankey et al., 2012; Park et al., 2019; Pulugurtha and Repaka, 2013, 2008;
Rodriguez et al., 2009; Sung et al., 2013)
Diversity
Land-use mix, entropy, + (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013;
balance, or % retail Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019; Liu and Griswold,
2009; Park et al., 2019; Sung et al., 2013)
ns/— (Amelietal, 2015; Arnold et al., 2010; Ewing et al., 2016; Ewing and
Clemente, 2013; Kang, 2018, 2017, 2015; Kim et al., 2019, 2017; Maxwell,
2016; Park et al., 2019)
Transit
Distance to nearest - (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hamidi
rail/bus stop/station and Moazzeni, 2019; Kang, 2017, 2015; Kim et al., 2019, 2017; Maxwell,
2016; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011,
Pushkarev and Zupan, 1971; Raford and Ragland, 2006; Sung et al., 2013,
2015)
ns/+ (Hankey etal., 2012; Park et al., 2019; Raford and Ragland, 2006; Rodriguez et
al., 2009)
Transit stop density + (Hankey and Lindsey, 2016; Hankey et al., 2017; Liu and Griswold, 2009; Lu
et al., 2018; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes,
2011; Park et al., 2019; Pulugurtha and Repaka, 2013, 2008; Schneider et al.,
2009, 2021; Sung et al., 2013; Tabeshian and Kattan, 2014)
ns/— (Kang, 2017, 2015; Le et al., 2020)
Street network design
Intersection density + (Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019)
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ns/— (Amelietal., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hankey
and Lindsey, 2016; Hankey et al., 2017; Kang, 2018, 2017, 2015; Lu et al.,
2018; Maxwell, 2016; Park et al., 2020; Sung et al., 2013)
% 4-way intersections + (Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Park et
al., 2019)
ns/— (Amelietal., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Maxwell,
2016; Park et al., 2019; Sung et al., 2013)
Block length + (Ewing et al., 2016; Ewing and Clemente, 2013; Maxwell, 2016; Miranda-
Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Park et al., 2019;
Tabeshian and Kattan, 2014)
ns/—  (Amelietal., 2015; Hamidi and Moazzeni, 2019; Park et al., 2019)
Space syntax + (Hajrasouliha and Yin, 2015; Hillier et al., 1993; Kang, 2018, 2017, 2015;
(integration, reach, Ozbil et al., 2011; Penn et al., 1998; Raford and Ragland, 2006, 2004)
betweenness, etc.)
ns/— (Kang, 2017, 2015)
Socioeconomics

Household size + (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Park et al.,
2019)
ns/—  (Hamidi and Moazzeni, 2019; Maxwell, 2016)
Mean/median income - (Hankey et al., 2017; Lu et al., 2018; Park et al., 2019; Pulugurtha and Repaka,
2013)

ns/+ (Hankey etal., 2012; Hankey and Lindsey, 2016; Pulugurtha and Repaka,
2013, 2008; Rodriguez et al., 2009; Schneider et al., 2021; Tabeshian and
Kattan, 2014)
Environmental
Park density or + (Kang, 2017, 2015)
proximity
ns/— (Kang, 2017, 2015; Miranda-Moreno and Fernandes, 2011; Schneider et al.,
2021; Sung et al., 2013)
Slope or grade - (Kang, 2018, 2017, 2015; Kim et al., 2019, 2017; Liu and Griswold, 2009;
Schneider et al., 2012; Sung et al., 2013, 2015)
ns/+ (Griswold et al., 2019)

2 Association with pedestrian volume: “+” positive, “—" negative, “ns” not statistically significant.

2.2.3 Traffic Signal-Based Measures of Pedestrian Activity

In this study, we mitigate some of these limitations by utilizing a new source of
pedestrian data: estimated pedestrian crossing volumes at signalized intersections, taken from
pedestrian push-button events recorded in archived high-resolution traffic signal controller logs
(Sturdevant et al., 2012). Assuming a traffic signal includes walk indications and pedestrian
detection (usually push-buttons), at least two relevant pedestrian events can be recorded. Event
code 90 (“pedestrian detector on”) occurs whenever a pedestrian push-button is activated
(pressed), which could happen multiple times per cycle. Event code 45 (“pedestrian call
registered”) occurs when a call to service a walk phase is registered, which usually happens just

once per cycle for a particular phase or crossing (upon the first pedestrian detection event). In
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recent years, several studies have investigated the use of pedestrian signal data for different
purposes, including for pedestrian volume estimation (Blanc et al., 2015; Day et al., 2011,
Kothuri et al., 2017; Li and Wu, 2021; Noyce and Bentzen, 2005; Singleton and Runa, 2021).
More generally, high-resolution traffic signal event data are beginning to be used in a variety of
other research and operational contexts (Wu and Liu, 2014), including through Automated
Traffic Signal Performance Measures (ATSPM) systems (Day et al., 2016).

To our knowledge, this is the first study to relate traffic signal-based measures of
pedestrian activity with built environment characteristics. Recall the three limitations of the
short-duration manual count pedestrian volume data typically used in prior built environment
direct-demand models: measurement error due to factoring, an inability to model temporal
variations, and the small number of locations studied. Since traffic signal data are recorded
continuously (24 hours a day, 365 days a year), they can overcome the second limitation. The
third limitation is constrained only by the number of signalized intersections with such data in an
area. Regarding the first limitation, we replace the measurement error associated with factoring
short-duration counts with the error due to the fact that pedestrian push-button data may not be a
perfect measure of pedestrian crossing volumes. One person may press the push-button multiple
times (although, only one pedestrian call would be registered), or a group of pedestrians may not
press the button at all. Nevertheless, prior research looking at a couple days of data at one
intersection in Oregon found correlations of around 0.80 or greater between pedestrian actuations
and crossing volumes (Blanc et al., 2015; Kothuri et al., 2017). Another study looked at two mid-
block crossings in Arizona over several days and estimated pedestrian crossing volumes from

push-button data with a mean error of around 2 pedestrians per hour (Li and Wu, 2021).

A recent large-scale research effort in Utah investigating the feasibility of pedestrian
traffic signal data for pedestrian volume estimation found similar levels of accuracy. Singleton et
al. (2020; Singleton and Runa, 2021) collected traffic signal data as well as video recordings of
pedestrian crossing events at 90 randomly selected signalized intersections across Utah in 2019.
Almost 175,000 pedestrians were manually counted during more than 10,000 hours of video,
covering different months, weekdays, and hours. The authors then developed simple non-linear
(quadratic and piecewise linear) regression models predicting hourly pedestrian crossing

volumes as a function of constructed measures of pedestrian signal data (pedestrian actuations,
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and unique pedestrian detections (removing those within 15 seconds of another detection)). For
ease of application, the models did not include traffic volumes or neighborhood
socioeconomic/environmental characteristics, although they did account for non-linear
relationships between push-button use and pedestrian volumes (high vs. low pedestrian activity
signal) and different traffic signal operations (phase on pedestrian recall or not, short vs. long
average cycle length; HAWK signal vs. traditional signal). Over more than 22,500 crossing-
hours of observations, the correlation between observed and model-predicted hourly pedestrian
crossing volumes was 0.84; most models had correlations close to 0.90, and the mean error was
+3 pedestrians per hour (Singleton et al., 2020; Singleton and Runa, 2021). Thus, these results
along with other recent research (Blanc et al., 2015; Kothuri et al., 2017; Li and Wu, 2021)
suggest that pedestrian signal data can be used to estimate pedestrian crossing volumes with
reasonable accuracy. Based on these prior research findings, we think the tradeoff in the sources
of error in the dependent variable (factoring short-duration counts vs. adjusting pedestrian push-

button data) is reasonable.

2.3 Direct-Demand Volume Modeling

As previously mentioned in Sections 1.1 and 2.2, direct-demand modeling is a frequently
used approach for estimating non-motorized travel (Kuzmyak et al., 2014), including pedestrian
volumes. Direct-demand models predict pedestrian volumes using observed counts and measures
of the surrounding streetscape, land uses, built environment, and street network. Such models
help to understand how environmental features affect pedestrian volumes and inform
transportation and land-use planning and urban design strategies to promote walkable
communities. In the following subsections, we describe details about how direct-demand models

are estimated and validated.

2.3.1 Log-Linear Regression

Consistent with many other studies using built environment characteristics to predict
pedestrian volumes (see Table 2-1), we employed a log-linear regression model in which our

dependent variable is transformed using the natural log function. In general, log-linear regression
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is used to predict a dependent variable (which may be skewed or the result of count data) using a

variety of categorical or continuous independent variable predictors. Specifically:

log(Y;) = Bo + B1X; + &

where log(Y;) is the log-transformed dependent variable Y; (in our case, annual average daily
pedestrian (AADP) crossing volume at an intersection i), 3, is an intercept, $, is a slope
coefficient associated with an independent variable X; (in our case, one of several built
environment characteristics), and ¢; is a random error term that is normally distributed. The
dependent and independent variables (e.g., density, household attributes, land use, local

destinations) are introduced in Chapter 3.0.

We decided against applying a negative binomial (or Poisson-gamma mixture) regression
model—traditionally used to model count data—because our pedestrian data are not actually
count data; instead, they are averages of counts. We used the log transformation because our data
are strictly positive and are positively skewed (Figure 2-1). An implication of the log-
transformed dependent variable is that we can interpret our estimated coefficients (when
exponentiated) as proportional or percentage changes (rather than absolute changes) in

pedestrian signal activity due to changes to our independent variables.
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Figure 2-1: Histogram of Annual Average Daily Pedestrian (AADP) Crossing Volume
(Top: AADP; Bottom: Log-Transformed AADP; Dashed Vertical Line: Mean)

2.3.2 Spatial Lag or Spatial Error Model

The pedestrian data in this study may have an issue of spatial autocorrelation, meaning
that the estimated pedestrian activity at one signal is correlated with activity at nearby signals.
Reasons for this might include walk trips that extend from one block to the next, similar
demographics or urban form characteristics, or a large-scale destination in one block (e.g., a
regional park, convention center, or theater). Moran’s I statistic is a commonly used measure to
check for spatial autocorrelation. Any spatial pattern in the residuals violates the assumption of

regression models that residuals are independent of each other and randomly distributed. Before
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controlling for the spatial autocorrelation, Moran’s I for model residuals in this study (p < .001)

indicated a strongly positive spatial relationship.

The spatial lag or error model can be used as a robust tool to deal with the spatial
autocorrelation issue in ordinary least squares (OLS) regression. The Lagrange multiplier test is
used to assess whether the autocorrelation is in the dependent variable or in the errors and helps
in the choice of a spatial regression model. The robust Lagrange multiplier test indicated a spatial
error model as the most suitable method, and thus, we employed spatial error models that treat
spatial autocorrelation between the residuals of adjacent areas. We ran spatial error models using
errorsarlm function (spdep package) in R 3.6.1 software. The Moran’s I values for the final

models’ residuals (p > .05), indicated no spatial autocorrelation.

2.3.3 Model Validation

To test how well our models can predict actual pedestrian volumes, we evaluated the
predictive performance of our models by running k-fold cross-validation (Fielding and Bell,
1997; Hair et al., 2006). Using the same data to estimate parameters and to test predictive
accuracy may overestimate model validity. In k-fold cross-validation, the data are divided into k
equal partitions. In this study, data were randomly divided into ten folds: 90% of the data
(training data) used for model fitting and 10% of the data withheld for model validation in each
iteration. The root mean square error (RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE) are used as three measures of the prediction capability of regression
models (Chai and Draxler, 2014; Willmott and Matsuura, 2005). This procedure is repeated for
each of the k partitions, and the RMSE, MAE, and MAPE values are averaged to obtain the

mean value.

2.4 Summary

Our review of pedestrian volume modeling studies found that most direct-demand models
utilized manually collected, short-duration pedestrian counts at only a few dozen to a few
hundred locations. Only one study used one week of automated counts, while only three studies
used data from more than 1,000 sites. These practices result in study limitations: measurement

error in the dependent variable, lower statistical power and lack of generalizability, and inability
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to model temporal variations in built environment relationships with pedestrian volumes. Our
research addresses many of these limitations through the use of a year’s worth of data from
almost 1,500 signalized intersections. Research on traffic signal-based measures of pedestrian
activity suggests that they are capable of predicting pedestrian volumes with reasonable
accuracy. When conducting direct-demand pedestrian volume modeling, log-linear (or negative
binomial) regression and accounting for spatial autocorrelation are best practices. Such models
should also consider various measures of the built environment, including those related to

density, transit service, street network design, demographics, and destinations.
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3.0 DATA COLLECTION

3.1 Overview

This chapter contains details about the data collection, including estimated pedestrian

volumes from traffic signal data and built environment data.

3.2 Estimated Pedestrian Volumes from Traffic Signal Data

The study area includes the six most populous counties in Utah: Salt Lake, Utah, Davis,
Weber, Washington, and Cache. Cumulatively, these six counties comprise 84% of Utah’s
population and contain most of the roughly 2,100 traffic signals in the state. Figure 3-1 shows a
map of the traffic signals located within the six study counties in Utah. The Utah Department of
Transportation (UDOT) has helped lead the development and deployment of the ATSPM system
(Day et al., 2016) through which archived traffic signal controller event logs can be accessed. As
of Fall 2018, UDOT was actively archiving data from more than 1,900 state- and locally owned
signals in a central database (Taylor and Mackey, 2018).
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Figure 3-1: Map of Signalized Intersections in the Six Most Populous Counties in Utah
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Our pedestrian volume data are estimates of annual average daily pedestrian (AADP)
crossing volumes at signalized intersections, derived from pedestrian activity events recorded in
high-resolution traffic signal controller event logs. For this study, we obtained one year—01 July
2017 through 30 June 2018—of pedestrian data from all traffic signals in our study area. After
cleaning the data to remove missing observations, we applied the pedestrian volume estimation
methods developed by Singleton et al. (2020; Singleton and Runa, 2021) to the pedestrian signal
data. Next, we aggregated (over hours in a day and crossings at an intersection) and averaged
(over days in the year) those estimates to calculate AADP at each signal. We then removed 143
locations with effectively no pedestrian activity (less than 1 per day); the vast majority of these
were signals with no pedestrian push-buttons, either in dense downtowns (where signals operated
on pedestrian recall) or in isolated locations (such as highway off-ramps and industrial areas).
After this process, we were left with 1,494 signals for our models. AADP ranged from 1 to
nearly 6,700, with a median of about 110 and a mean of about 270. The distribution of AADP
was positively skewed and leptokurtic. Since our data are available continuously throughout the
year, we also calculated AADP for weekdays vs. weekends. In addition, we calculated the annual
average hourly pedestrian (AAHP) crossing volumes for various times of day. As noted in the
literature review, most studies do not collect enough data to analyze time-of-day variations, so
we think our ability to model both average daily and average hourly pedestrian volumes is a
relatively unique contribution. Descriptive statistics for the pedestrian volume-dependent
variables are shown in Table 3-1.

Table 3-1: Descriptive Statistics for Dependent Variables

Variable Min Med Max Mean SD
Estimated annual average daily pedestrians (AADP) 1.08 116.13 6737.22 267.28 519.00
Weekdays (Monday—Friday) 112 133.15 7547.23 300.66 598.50
Weekends (Saturday—Sunday) 0.61 7752 471221 183.82  352.54
Estimated annual average hourly pedestrians (AAHP) 0.04 484  280.72 11.14 21.63
00:00-02:59 0.00 0.43 46.86 1.58 3.98
03:00-05:59 0.00 0.49 53.81 1.41 3.65
06:00-08:59 0.01 485  269.93 10.19 19.38
09:00-11:59 0.05 5.84  418.02 14.53 30.99
12:00-14:59 0.04 8.31 536.79 19.70 41.19
15:00-17:59 0.09 9.69  487.00 21.52 41.51
18:00-20:59 0.05 546  366.67 14.00 28.76
21:00-23:59 0.01 226  135.23 6.16 12.34
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We have also visualized AADP and AAHP pedestrian crossing volumes on a map. To do
this, we chose to use ArcGIS Online and create an online web map. The “Estimated Pedestrian
Volumes at Signalized Intersections (1,494) in Utah” is available for public viewing here:
https://arcg.is/0S84WfT. A direct link to the map itself is here: https://arcg.is/1aTT4f. A

screenshot of the map showing overall (any day) estimated AADP volumes for traffic signals in

Salt Lake County is shown in Figure 3-2.
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Figure 3-2: Estimated Annual Average Daily Pedestrian (AADP) Volumes at Traffic
Signals in Salt Lake County, Utah

3.3 Built Environment Data

Neighborhood built environment variables were measured for two different buffer
widths—Y2-mile and ¥%-mile—in a belief that the number of pedestrians may depend on the
neighborhood environment at different scales. For example, the influence of road traffic volume
on pedestrian activity may only be significant over a short distance while that of street network

connectivity may be more extensive. A quarter-mile and a half-mile were selected as a standard
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walking distance beyond which walk frequency drops off rapidly; they are used in most travel
behavior literature (Ewing and Clemente, 2013; Nagel et al., 2008). Thus, using the “Network
Analyst” tool in the ArcGIS Pro software, we created street network-based buffers by %2-mile

and ¥s-mile for every signalized intersection.

For the predictors of pedestrian signal activity, we measured “D” variables—density,
diversity, design, destination accessibility, and distance to transit—as well as socioeconomic
factors. For density variables, we measured population density (number of 1,000 people per
square mile) and employment density (number of 1,000 jobs per square mile). The population
data came from the American Community Survey (ACS) 2013-2017 at the Census block group
level, and the employment data (2017) were collected from the Longitudinal Employer-
Household Dynamics (LEHD) at the Census block level. Then, the data were assigned to the
buffers based on the relative areas of the Census boundaries (i.e., the spatial apportioning
technique). For the land-use variables, we compiled parcel-level land-use maps from the Utah
Automated Geographic Reference Center (AGRC) for the year 2019 and computed the
percentage of residential parcels, percentage of commercial parcels, number of schools, number
of places of worship, and total acreage of parks.

For a transit variable, we measured the number of transit stops in each buffer area.
Transit stop location data in 2019 was available at OpenMobilityData (https://transitfeeds.com/)
as a form of General Transit Feed Specification (GTFS). Also, two gross measures of street
network design were computed, using intersection location data provided by the Metropolitan
Research Center at the University of Utah. Intersection density (a measure of the block size) was
computed as the number of intersections within a buffer divided by the gross area of the buffer in
square miles. The proportion of four-way intersections (a measure of street connectivity) was
computed as the number of four-way intersections divided by the total number of intersections

within the buffer area.

Three demographic variables were also included—average household size, median
household income, and average vehicle ownership—for block groups intersecting with the
buffer. We hypothesized that more affluent residents with more vehicles available might walk

less and drive more, while bigger households might walk more (Ewing et al., 2015; Owen et al.,
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2007). Data for demographic measures were gathered from the ACS (2017 5-year estimates) and
assigned to the buffer using the spatial apportioning technique described above. Lastly, as a
measure of traffic safety, we included road types for roads near the intersection. Road types were
divided into three categories based on the cartographic code of road centerline data, provided by
UDOT: highways (interstates, US and state highways, and associated ramps), major roads
(“major local roads” such as arterials), and local roads (the rest, including collectors). (We
wanted to include Annual Average Daily Traffic (AADT) volumes in the model, but they were
not available for several signals and most intersections where one would want to apply these
data. Also, preliminary models found AADT to be not significantly associated with pedestrian

volumes.)

Table 3-2 shows descriptive statistics for the built environment variables. Within a given
buffer width, all correlations between these variables were low to moderate (< 0.55) except for a
negative correlation between residential and commercial land uses (-0.75). Also, the highest
variance inflation factor (VIF) values in the regression models were lower than 5. Therefore, we

conclude that multicollinearity among independent variables was not an issue.

Table 3-2: Descriptive Statistics for Independent Variables

Ya-mile Yo-mile

Variable Mean SD Mean SD
Population density (1,000 per sg. mi.) 4.39 2.80 4.44 2.55
Employment density (1,000 per sg. mi.) 5.60 8.10 4.85 6.31
Household size (average) 3.09 1.09 3.10 0.98
Household income ($1,000) 59.75 2321 60.27 22.40
Vehicle ownership 1.68 0.51 1.69 0.47
% residential land use 31.02 2272 3717 2137
% commercial land use 29.38 20.11 2474 16.86
Intersection density (per sg. mi.) 97.97 49.01 100.32 38.86
% 4-way intersections 28.46 21.88 2579 16.61
# schools 0.30 0.62 0.92 1.18
# places of worship 0.52 0.80 1.79 1.84
# transit stops 4.81 3.94 1271 9.93
Park acreage 1.46 3.59 5.54 9.10

3.4 Summary

The outcome data (dependent variables) are pedestrian crossing volumes, estimated from

traffic signal data. To obtain these volumes, we used one year of ATSPM data (July 2017
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through June 2018) at 1,494 signalized intersections in the six most populous Utah counties and
applied the factoring methods developed in the Phase | project (Singleton et al., 2020). We then
calculated the average annual daily and hourly pedestrian (AADP, AAHP) volumes overall and
for weekdays vs. weekends and each three-hour period during the day. The input data
(independent variables) are measures of the locations surrounding each signal related to land use,
the built environment, the transportation system, and neighborhood demographics. Data came

from a variety of sources and was measured using quarter-mile and half-mile network buffers.
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4.0 DATA EVALUATION

4.1 Overview

This chapter reports on data evaluation aspects, including results of the direct-demand
models of daily and hourly pedestrian volumes, model validation results, and model application

and visualization.

4.2 Results for Annual Average Daily Pedestrians by Day of Week

Table 4-1 shows three models for daily pedestrian activity (AADP) for all days,
weekdays, and weekends, respectively. Lambda represents a coefficient on the spatially

correlated errors (Anselin and Rey, 2010): it has a positive effect and is statistically significant in

all models.
Table 4-1: Model Results, Annual Average Daily Pedestrians
n=1,494 signals Day of week (AADP)
All days Mon—Fri Sat-Sun
Variable B  SE sig® B  SE sig® B  SE sig®
(Intercept) 2.747 0.234 * 2.897 0.235 * 2.275 0.242 *
Population density (Y2-mile)® 0.326 0.059 * 0.344 0.059 * 0.373 0.061 *
Employment density (Ya-mile)® 0.124 0.028 * 0.136 0.028 * 0.070 0.029 *
Household size (%-mile)® 0.418 0.102 * 0.452 0.103 * 0.146 0.106
Household income (Y2-mile) -0.010 0.002 * -0.010 0.002 * -0.008 0.002 *
Vehicle ownership (Y2-mile) -0.198 0.072 * -0.217 0.073 * -0.103 0.075
% residential (Y-mile) 0.006 0.002 * 0.006 0.002 * 0.006 0.002 *
% commercial (Y2-mile) 0.019 0.002 * 0.019 0.002 * 0.022 0.002 *
Intersection density (Y2-mile) 0.004 0.001 * 0.004 0.001 * 0.004 0.001 *
% 4-way intersections (Y2-mile) 0.006 0.002 * 0.006 0.002 * 0.008 0.002 *
# schools (Ya-mile) 0.155 0.039 * 0.170 0.039 * 0.065 0.041
# places of worship (Y2-mile) 0.060 0.020 * 0.054 0.021 * 0.080 0.021 *
# transit stops (Ya-mile) 0.068 0.008 * 0.069 0.008 * 0.066 0.008 *
Park acreage (Y-mile)P 0.022 0.007 * 0.023 0.007 * 0.025 0.007 *
Road type (major road dummy) 0.242 0.053 * 0.245 0.053 * 0.245 0.055 *
Model diagnostics® Lambda: 0.49 Lambda: 0.49 Lambda: 0.46
AIC: 3772 AIC: 3784 AIC: 3909.7

a*: p<.05; ~: p<.1
b Jog-transformed
¢ all Lambdas are p<.001
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Most built environment variables—population density, employment density, %
residential parcels, % commercial parcels, intersection density, % 4-way intersections, schools,
places of worship, transit stops, and park acreage—were statistically significant at a p<.05 level
and positively associated with the estimated average daily volumes of pedestrians. Among
demographic variables, pedestrian volume increased with average household size and decreased
with median household income and average vehicle ownership of households living near the
intersection. Pedestrian volume increased significantly when the intersection contained major

roads, compared with only highway or local road types.

Notable day-of-week differences were also found. As expected, the number of schools
near the intersection was not significant in the weekend model; so were two other demographic
variables: household size and vehicle ownership. Albeit statistically significant across the three
daily models, a higher coefficient for the employment density variable was found on weekdays
while the population density variable had a bigger size effect on weekends. Also, the coefficient

for places of worship was higher in the weekend model.

4.3 Results for Annual Average Hourly Pedestrians by Time of Day

Table 4-2 shows eight models for hourly pedestrian activity (AAHP) for specific times of
day, in 3-hour windows from midnight to midnight. Lambda values had a positive effect and

were statistically significant in all models.

29



Table 4-2: Model Results, Annual Average Hourly Pedestrians

n=1,494 signals

Time of day (AAHP)

12am-3am 3am—6am 6am—9am 9am-12pm
Variable B SE sig? B  SE sig? B  SE sig? B  SE sig?
(Intercept) -1.203 0.262 * -0.965 0.254 * -0.013 0.246 -0.175 0.230
Population density (Y2-mile)® 0.499 0.066 * 0.317 0.064 * 0.252 0.062 * 0.293 0.058 *
Employment density (Ya-mile)® 0.061 0.031 ~ 0.034 0.031 0.078 0.029 * 0.129 0.027 *
Household size (Ya-mile)® 0.092 0.115 0.266 0.111 * 0.420 0.107 * 0.377 0.100 *
Household income (Y2-mile) -0.016 0.002 * -0.013 0.002 * -0.008 0.002 * -0.009 0.002 *
Vehicle ownership (2-mile) -0.149 0.081 ~ -0.236 0.078 * -0.270 0.076 * -0.188 0.071 *
% residential (%-mile) -0.002 0.002 -0.003 0.002 0.008 0.002 * 0.004 0.002 ~
% commercial (Y2-mile) 0.013 0.002 * 0.010 0.002 * 0.013 0.002 * 0.019 0.002 *
Intersection density (%%-mile) 0.001 0.001 0.002 0.001 ~ 0.003 0.001 * 0.004 0.001 *
% 4-way intersections (Y2-mile) 0.005 0.002 * 0.002 0.002 0.005 0.002 * 0.007 0.002 *
# schools (Ya-mile) 0.008 0.044 -0.016 0.043 0.244 0.040 * 0.115 0.038 *
# places of worship (Y2-mile) 0.052 0.023 * 0.040 0.022 ~ 0.049 0.021 * 0.069 0.020 *
# transit stops (Ya-mile) 0.047 0.009 * 0.046 0.009 * 0.060 0.008 * 0.074 0.008 *
Park acreage (Y2-mile)P 0.017 0.007 * 0.016 0.007 * 0.020 0.007 * 0.019 0.006 *
Road type (major road dummy) 0.203 0.059 * 0.258 0.058 * 0.258 0.055 * 0.230 0.051 *
Model diagnostics® Lambda: 0.47 Lambda: 0.44 Lambda: 0.51 Lambda: 0.51

AIC: 4135.2 AIC: 4070.8 AIC: 3887.7 AIC: 3697.0
n=1,494 signals Time of day (AAHP)

12pm-3pm 3pm-—6pm 6pm—9pm 9pm—12am
Variable B SE sig? B SE sig® B SE sig? B SE sig?
(Intercept) 0.029 0.231 0.216 0.233 -0.420 0.237 ~ -0.826 0.241 *
Population density (Y2-mile)® 0.334 0.058 * 0.343 0.059 * 0.388 0.060 * 0.498 0.061 *
Employment density (Ya-mile)® 0.147 0.028 * 0.121 0.028 * 0.112 0.028 * 0.116 0.029 *
Household size (Ya-mile)® 0.426 0.101 * 0.444 0.102 * 0.327 0.104 * 0.257 0.105 *
Household income (Y2-mile) -0.010 0.002 * -0.010 0.002 * -0.010 0.002 * -0.013 0.002 *
Vehicle ownership (*2-mile) -0.169 0.071 * -0.191 0.072 * -0.131 0.073 ~ -0.133 0.074 ~
% residential (Ya-mile) 0.005 0.002 * 0.006 0.002 * 0.005 0.002 * 0.002 0.002
% commercial (Ya-mile) 0.020 0.002 * 0.019 0.002 * 0.021 0.002 * 0.018 0.002 *
Intersection density (¥2-mile) 0.004 0.001 * 0.004 0.001 * 0.004 0.001 * 0.003 0.001 *
% 4-way intersections (Y2-mile) 0.006 0.002 * 0.006 0.002 * 0.008 0.002 * 0.007 0.002 *
# schools (Ya-mile) 0.167 0.039 * 0.159 0.039 * 0.079 0.039 * 0.030 0.040
# places of worship (2-mile) 0.068 0.020 * 0.058 0.020 * 0.071 0.021 * 0.064 0.021 *
# transit stops (Ya-mile) 0.074 0.008 * 0.072 0.008 * 0.069 0.008 * 0.062 0.008 *
Park acreage (%-mile)P 0.022 0.006 * 0.021 0.007 * 0.028 0.007 * 0.025 0.007 *
Road type (major road dummy) 0.220 0.052 * 0.259 0.052 * 0.220 0.053 * 0.202 0.054 *
Model diagnostics® Lambda: 0.48 Lambda: 0.48 Lambda: 0.49 Lambda: 0.49

AIC: 3741.6 AIC: 3764.2 AIC: 3810.5 AIC: 3857.6

a*: p<.05; ~: p<.1
b Jog-transformed
¢all Lambdas are p<.001

Again, most built environmental variables were positively associated with the pedestrian

volumes across the day at a p<.05 significance level: population density, employment density, %

commercial parcels, intersection density, % 4-way intersections, places of worship, transit stops,

and park acreage. Average household size (positively), median household income (negatively),
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and vehicle ownership (negatively) were also statistically significant in most time-of-day models
of pedestrian volume. Higher pedestrian volumes were found for intersections on major roads, as

opposed to just highways or local road types.

Some time-of-day differences were also found. The number of schools near an
intersection was positively associated with pedestrian activity, but only during the daytime
(6am—9pm). Residential land use became statistically non-significant during the nighttime (in the
after-9pm or before-6am models). The slope coefficients of population density were higher
during the nighttime (after-6pm models) while those of employment density were higher during
the daytime (models for 9am—3pm). The coefficient for being on a major road (as opposed to a

highway or local road) was stronger during peak hours (6am-9am and 3pm-6pm).

4.4 Overall Results

Table 4-3 shows the direction of significant effects for all independent variables in the
three AADP and eight AADH models. Results from both the daily and hourly models confirm
theoretically consistent relationships between built environment measures and pedestrian
activity, as identified in Table 2-2 through the literature review. In general, more pedestrian
activity was found in locations with greater density (greater population and employment density,
higher shares of residential and commercial land uses), more transit access (greater transit stop
density), more connected street networks (greater intersection density, higher share of four-way

intersections), and closer to major destinations (parks, schools, and places of worship).

Results from the day-of-week and time-of-day models also highlighted important
temporal variations in built environment relationships with walking. Schools were significant
and influential only when in session: on weekdays and during daytime hours, not on weekends or
at night. As expected, employment density was less influential and/or not significant on
weekends and at night, while residential density had larger coefficients at night and on

weekends.
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Table 4-3: Model Results, Overall

n=1,494 signals Day of week Time of day (AAHP)
(AADP)

All Mon- Sat- 12am 3am- 6am- 9am- 12pm 3pm- 6pm- 9pm-
Variable days Fri Sun -3am 6am 9am 12pm -3pm 6pm 9pm 12am
Population density (¥2-mile)® + + + + + + + + + + +
Employment density (Ya-mile)® + + + + + + + + + +
Household size (Ya-mile)® + + + + + + + + +
Household income (Y2-mile) - - - - - - - - - - _
Vehicle ownership (Y2-mile) - - - - - - - - - _
% residential (Ya-mile) + + + + + + + +
% commercial (Ya-mile) + + + + + + + + + + +
Intersection density (Y2-mile) + + + + + + + + + +
% 4-way intersections (Y2-mile) + + + + + + + + + +
# schools (Y2-mile) + + + + + + +
# places of worship (*2-mile) + + + + + + + + + + +
# transit stops (Ya-mile) + + + + + + + + + + +
Park acreage (Y2-mile)® + + + + + + + + + + +
Road type (major road dummy) + + + + + + + + + + +
Notes: + = significant positive association, — = significant negative association, blank = no significant association.

4.5 Model Validation Results

After fitting the models with the full data, we assessed the predictive power of the nine
models using 10-fold cross-validation. Intersections (n=1,494) were randomly split into ten
equal-sized groups. The validation data set (10% of the data) was used to validate the model,
which was fitted using the other 90% of the data through a spatial error model. As a result of the
10-fold cross-validation, we obtained average RMSE, MAE, and MAPE for each model. From
the cross-validation results, the average RMSESs ranged from 0.933 (AAD model) to 2.176 (6-
9am model); the average MAEs were between 0.701 (AAD model) and 1.976 (3—6pm model);
and the average MAPESs ranged from 22.0% (Mon-Fri model) to 534.0% (12-3am model).
These error values are comparable to those from the full model (RMSEs: 0.901-1.037; MAEs:
0.679-0.793; MAPEs: 21.8-534.0%), indicating that our predictive models are stable for new
input data. A further exploration of errors show that pedestrian traffic volumes were
underestimated in the areas with highest pedestrian volume such as downtowns and near
university campuses, findings which call for additional explanatory variables or non-linear

functions.
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4.6 Model Application and Visualizations

The ultimate objective of developing direct-demand models of pedestrian volumes is to
utilize their ability to predict pedestrian volumes in locations where data on pedestrians do not
exist. For this project, the objective was to predict pedestrian volumes for unsignalized
intersections, to supplement the traffic signal-based estimates of pedestrian volumes at signalized
intersections. Therefore, we applied the models presented earlier in this chapter to around 62,000
unsignalized intersections with 3 or 4 legs (62,336 to be exact) in the six major counties of Utah.
These intersection locations were the same as used earlier, provided by the Metropolitan

Research Center at the University of Utah.

The first step was to assemble all of the necessary data about those unsignalized
intersections needed to apply the direct-demand pedestrian volume models. This information
included the same built environment data as was assembled for signalized intersections, as
described in Section 3.3: characteristics of land uses (residential and commercial), the built
environment (population and employment density, schools, parks, places of worship), the
transportation system (intersection density, transit stop density, percentage of four-way
intersections, road type), and neighborhood demographics (household size, household income,
and vehicle ownership). These measures were assembled from the same data sources (UDOT,
Utah AGRC, US Census, etc.) and using the same methods (quarter-mile or half-mile network
buffers).

The next step was to apply the direct demand pedestrian volume models to the data
assembled for the unsignalized intersections. We took the 12 models—three for AADP (all,
weekday, weekend), and nine for AAHP (all, plus three-hour intervals throughout the day)—and
applied each of them to all of the 62,336 unsignalized intersections. Thus, for each unsignalized
intersection, we obtained an annual average prediction of daily and hourly pedestrian volumes

for different days of the week and times of day.

The final step was to assemble our predicted pedestrian volumes and visualize them on a
map. To do this, we chose to use ArcGIS Online and create an online web map. The “Predicted
Pedestrian volumes at Intersections (62k) in Utah” is available for public viewing here:

https://arcg.is/008bOG. A direct link to the map itself is here: https://arcg.is/lOGOOQCv.
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Screenshots of the map showing overall (any day) predicted AADP volumes for different urban
areas in Utah are shown in Figure 4-1. Screenshots of the map showing overall, weekday, and

weekend predicted AADP volumes for one area in Utah are shown in Figure 4-2.
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Figure 4-1: Predicted Annual Average Daily Pedestrian (AADP) Volumes in Various Utah
Urban Areas
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Figure 4-2: Predicted Annual Average Daily Pedestrian (AADP) Volumes for Various
Weekdays

4.7 Summary

Results from daily and hourly direct demand pedestrian volume models confirmed
theoretically consistent relationships between built environment measures and pedestrian
activity. In general, more pedestrian activity was found in locations with greater density, more
transit access, more connected street networks, and closer to major destinations. Results also
highlighted important temporal variations in built environment relationships with walking.
Schools were significant and influential when in session: on weekdays and during daytime hours.
Employment density was less influential, while population density was more influential, on
weekends and at night.
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5.0 CONCLUSIONS

5.1 Summary

To meet our study objective of examining relationships between the built environment
and pedestrian activity, we developed direct-demand built environment models of daily and
hourly pedestrian crossing volumes at signalized intersections using a novel data source:
volumes estimated using pedestrian push-button events from high-resolution traffic signal
controller logs. Based on our review of past research, we used log-linear regression and
controlled spatial autocorrelation, and we examined traditional built environment measures like
activity density, land use, transit access, street network design, and neighborhood
sociodemographics. In contrast to previous work, we employed a continuously collected measure
of pedestrian activity estimated from signal data, measured over the course of one full year, and
averaged per day and per hour. Notably, we also identified day-of-week and time-of-day
variations in built environment relationships with walking volumes, which we believe to be a
relatively unique contribution to the literature (see Lu et al., 2018 for one other example).
Another contribution of our work is that we used a larger sample size of sites (1,494 signalized
intersections from different areas in Utah) than almost any other past effort, giving our analysis

more power and potentially making our results more generalizable.

5.2 Findings

Indeed, all of our findings are consistent with theory and expectations (from past
research) regarding links between walking and the built environment (see Table 2), which
supports the validity of our pedestrian measures. Intersections with greater population and
employment densities and higher percentages of nearby residential and commercial land uses
saw more pedestrian activity (Ameli et al., 2015; Behnam and Patel, 1977; Ewing et al., 2016;
Ewing and Clemente, 2013; Kim et al., 2019; Liu and Griswold, 2009; Miranda-Moreno et al.,
2011; Miranda-Moreno and Fernandes, 2011; Ozbil et al., 2011; Park et al., 2019; Pulugurtha
and Repaka, 2013, 2008; Schneider et al., 2012; Sung et al., 2013). Transit stop density was

strongly and positively linked to walking (Miranda-Moreno et al., 2011; Miranda-Moreno and
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Fernandes, 2011; Park et al., 2019; Sung et al., 2013). Regarding sociodemographic
characteristics, as has been found previously, pedestrian activity was greater in neighborhoods
with larger household sizes (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013;
Park et al., 2019). Overall, these results continue to support research-informed built environment

interventions and land-use policies aimed at creating more walkable communities.

Our analysis was also able to uncover theoretically consistent relationships between
walking and other built environmental attributes for which past research has more commonly
found null or theoretically inconsistent findings. Signals in areas with greater street network
connectivity had more pedestrian crossing events, which has been found in only a few prior
studies for intersection density (Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019) and
the percentage of four-way intersections (Miranda-Moreno et al., 2011; Miranda-Moreno and
Fernandes, 2011; Park et al., 2019). Specific nearby destinations like parks also attracted more
pedestrian crossings, which has only been found in studies by Kang (2017, 2015). Pedestrian
volumes were greater in neighborhoods with lower median household incomes, which has been
found in some studies (Hankey et al., 2017; Lu et al., 2018; Park et al., 2019; Pulugurtha and
Repaka, 2013) but not in other studies (Hankey et al., 2012; Pulugurtha and Repaka, 2008;
Rodriguez et al., 2009). One of our findings is perhaps contrary to expectation: the positive
association of pedestrian activity with major roads. It could be that the design and traffic
volumes on these streets encourage pedestrians to cross at the signal rather than at an
unsignalized intersection (Schneider et al., 2012), or that pedestrian attractors (businesses, transit

stops) are commonly located along these streets (Griswold et al., 2019).

The use of a continuously recorded pedestrian data source also allowed us to examine
time-of-day and day-of-week variations in these built environment relationships that are not
feasible to consider when using only short-duration pedestrian counts. Many factors had similar
relationships with pedestrian activity throughout the week and across the day, but a few did not.
Population density seemed to be most relevant (with a larger coefficient) on weekends and
during evening hours, when we expect more people to be at home. For example, a 10% increase
in population density would be expected to yield a 3.8% increase (1.10%38) in evening hourly
pedestrian volumes (6-9pm), but only a 2.4% increase (1.10%2?) during the morning (6-9am).

Lu, et al. (2018) also found population density to have a larger coefficient during evening hours
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than during the day. Conversely, employment density played a bigger role on weekdays and
during daytime hours: a 10% increase in employment density would be expected to generate
1.3% more (1.10%1%) daily pedestrians during weekdays, but only 0.7% more (1.10%°7°) during
weekends. As expected, our models showed that intersections near schools had greater pedestrian
activity, but only or especially when primary/secondary schools are in session: on weekdays and
during morning and afternoon commuting hours. This finding supports traffic calming and safety
efforts around primary/secondary schools, including school-zone speed limits and crossing
guards.

5.3 Limitations and Challenges

Despite these contributions, a limitation of this work is the use of pedestrian volumes
estimated from traffic signal data as opposed to observed pedestrian counts or crossing volumes.
Previous research on pedestrian behavior and the utilization of pedestrian push-buttons at signals
has found that rates vary across locations such as by signal type (Kutela and Tang, 2020), in
different situations like the presence/absence of approaching motor vehicles (Foster et al., 2014),
and by age, gender, and other pedestrian characteristics (Kutela and Tang, 2020). These factors
and their aggregated versions (i.e., motor vehicle traffic volumes and neighborhood socio-
demographics) have not been considered in the models upon which our estimated pedestrian
volume data are based (Singleton et al., 2020; Singleton and Runa, 2021). However (as
previously mentioned), research from Utah and other states (Blanc et al., 2015; Kothuri et al.,
2017; Li and Wu, 2021; Singleton et al., 2020; Singleton and Runa, 2021) has found pedestrian
push-button event data to be highly correlated with observed pedestrian crossing volumes. So,
any improvement in the accuracy of our models’ dependent variables through the addition of

factors like these would likely be modest.

Another limitation is that the locations where pedestrian signal data are available may not
be entirely representative. These data are not available at signals without pedestrian detection: in
our study, these included some high-pedestrian downtown intersections that operate without
push-buttons, as well as a few intersections in heavily-industrial areas and isolated freeway
interchanges. Also, signalized intersections tend to be more highly concentrated along larger,

arterial roadways and in urban areas, so our findings may not be completely generalizable to
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non-signalized intersections, and our data may capture more utilitarian walk trips. That said,
more than 90% of Utah’s population lives in an urban area, and we did find more walking near
parks. It could be advantageous to combine signal-based estimates of pedestrian volumes with
data from permanent pedestrian counters on trails and in other more recreational contexts in
order to improve the generalizability of direct-demand models. Overall, these methods may be
most appropriate for moderately urban to suburban locations. Nevertheless, this trait is fortunate,
since (in the US) these tend to be the locations most lacking in pedestrian data and where
tradeoffs have to be made between priorities (e.g., in signal timing) for pedestrians vs. motor

vehicle drivers.

Despite these limitations and opportunities for future work, we think our theoretically
consistent findings about built environment relationships with walking—and our ability to detect
day-of-week and time-of-day variations in those relationships—demonstrate the utility of traffic
signal data sources for direct-demand pedestrian volume modeling. There are hundreds of
thousands of traffic signals across the US (NTOC, 2012), many with pedestrian push-buttons
(more than 85% in Utah). Also, many states and regions (including Utah, Georgia, and the
Phoenix, Las Vegas, and Orlando areas) have or are actively developing ATSPM systems to
archive pedestrian detections and other signal events. These trends make our methods
increasingly applicable for the development of locally calibrated direct-demand pedestrian
volume models. Additionally, the ultimate objective of direct-demand models is to predict
pedestrian volumes in areas and for locations without current pedestrian data. In fact, the specific
models presented in this paper can be applied, using built environment data, to estimate average
daily/hourly pedestrian volumes at thousands of unsignalized intersections throughout Utah.
Such estimates would be valuable for various transportation planning, design, and operational
tasks, including as a measure of exposure for pedestrian safety studies. Overall, this work
provides planners with more tools to model, analyze, and plan for pedestrians with greater

temporal resolution.
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6.0 RECOMMENDATIONS AND IMPLEMENTATION

6.1 Recommendations

An accurate prediction of pedestrian traffic volume is an important goal for urban and
transportation planners. The estimated pedestrian volumes at all intersections in Utah, a major
product of this research project, can help UDOT and other governmental agencies at the state,

regional, and local levels in multiple ways.

First, we recommend using the estimated pedestrian volumes as a measure of pedestrian
exposure in pedestrian safety analyses (e.g., pedestrian crash rates, pedestrian crash frequency
models, pedestrian fatalities involving impaired road users) (Lee & Abdel-Aty, 2005). As
previously mentioned, pedestrian volume data useful for pedestrian safety analysis is costly and
time-intensive to measure directly, so model-estimated volumes offer a potentially useful source
of data. Crash prediction models and predictive methods—including safety performance
functions and crash modification factors—would benefit greatly from being able to include (and
control for) more robust data on pedestrian exposure, usually the biggest data barrier involved in

pedestrian safety analysis (Singleton, Mekker, and Islam, 2021).

Second, these pedestrian volumes can be used in various other analysis procedures.
Multimodal level-of-service calculations—including for pedestrian level of service for signalized
intersections, but also for street segments and stop-controlled intersections—require information
on pedestrian flow rates (TRB, 2016). Our models of pedestrian traffic volumes can provide
necessary information for these types of calculations. Also, transportation planners can relate the
pedestrian volume at intersections to walking-based physical activity levels (distances, durations)
for health impact assessments. Policies that increase pedestrian traffic volume, such as reducing
traffic injuries and pollution and promoting active transportation, are likely to yield more
individual health benefits through increases in physical activity for pedestrians, cyclists, and
transit riders (de Nazelle et al., 2011).

Third, the spatial and temporal distributions of pedestrian volume highlight certain areas

to prioritize planning and development interventions. In addition to guiding development
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patterns (see the next paragraph), those data also show where to invest and improve pedestrian
infrastructures, such as infill sidewalks or pedestrian crossing treatments. For example, expected
pedestrian volume (obtained from our model estimates) could be one criterion when evaluating
and programming pedestrian-focused infrastructure projects so that investment is directed
towards locations with the biggest impact. Places with higher anticipated pedestrian volumes
could be required to install higher-quality facilities, like wider sidewalks and pedestrian-scale
lighting. Information about temporal variations in pedestrian activity could also be used when
permitting roadway or commercial/residential construction, so that sidewalks are not closed in
places where or during times when significant pedestrian activity is expected. Even local
businesses could use our models’ estimates of pedestrian volumes to evaluate different potential
locations’ exposure to foot traffic, helping to evaluate the commercial viability of new retail

businesses or advertising.

Fourth, our statistical models of daily and hourly pedestrian traffic volume support built
environment interventions and land-use policies aimed at creating more walkable communities.
There is a growing interest in creating active living and walk-friendly communities in order to
improve health, reduce automobile dependence, and strengthen local economies. The first
implication for planning practice is that context is essential in street vitality. To increase the
density of population and employment and promote mixed-use developments, municipalities can
amend zoning or adopt a form-based code. State and regional agencies can support those efforts
both financially and technically. The Wasatch Regional Front Council (WFRC), the major MPO
in Utah, began working in 2013 to establish a program called “Transportation and Land Use
Connection” (TLC) to support communities in coordinated smart-growth planning (WFRC, n.d.).
The TLC program is distinctive and noteworthy in terms of: 1) the extensive partnership with
state and local agencies, including UDOT, UTA, and Salt Lake County, and their active
participation both financially and technically in projects; 2) dedicated staff to administer
projects, reducing the administrative burden on the cities and allowing the program partners to
see regularly if TLC goals are met; and 3) a great demand for the program from the cities seeing
rapid population growth and urban expansion. Our pedestrian volume models provide UDOT
and other agencies with specific built environment measures to promote pedestrian activity on
streets, including public transit stop density, street network connection (e.g., intersection density,

% 4-way intersections), and the availability of parks and schools.
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Finally, there are opportunities to improve upon our analysis through additional research.
Future studies could examine seasonal variations in daily pedestrian activity at signalized
interactions, which would consider effects due to weather variables such as temperature,
precipitation, and wind (Runa and Singleton, 2021). Also, because pedestrian traffic volumes
may not be linearly related to all built environment variables, future studies may use non-linear
regression such as generalized additive models (Park et al., 2020) or machine learning algorithms
such as gradient-boosting decision trees or random forests (Cheng et al., 2019; Ding et al., 2018).
We expect that by using long-term automated counts derived from traffic signal event data, our
pedestrian measures can potentially do a better job of reducing the random variability arising
from short-term (usually < 12 hours) counts, thus yielding more robust relationships with
measures of the built environment. However, this topic—quantifying error associated with
estimates of pedestrian volumes using different durations of count data (Johnstone et al., 2018;
Nordback et al., 2019)—is another subject for further study. Research should also continue to
explore the feasibility and accuracy of other pedestrian detection methods—video image
processing (Rahman et al., 2019), LIiDAR (Zhao et al., 2019), and others—for pedestrian volume

monitoring applications.

Diversifying data sources and using machine learning techniques can contribute to a more
accurate prediction of pedestrian traffic volume across multiple parts of Utah. As we pointed out
in the previous “5.3 Limitations and Challenges” section, some types of intersections do not have
pedestrian signal data, which could hurt the generalizability of our models and resulting maps.
Those include high-traffic downtown areas without push-buttons, industrial areas and isolated
freeway interchanges, and rural areas with unsignalized intersections. Also, our data may capture
more utilitarian walk trips. Through big data processing and machine learning techniques, it
could be advantageous to combine signal-based estimates of pedestrian volumes with data from
permanent pedestrian counters on trails, app-based data (e.g., Strava), and cellphone-based traffic
data (e.g., INRIX, StreetLight, AirSage).
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	EXECUTIVE SUMMARY 
	Quantifying pedestrian volumes and levels of walking activity is critical for many transportation tasks, including pedestrian planning and safety analysis. Because of the limitations of traditional pedestrian data collection methods (typically short-duration manual counts at a limited number of locations), direct-demand models of pedestrian volume models—identifying relationships with built environment characteristics—are becoming more common. Still, direct- demand models require large quantities of (pedest
	We overcome these limitations using a novel source of pedestrian data: estimated pedestrian crossing volumes based on push-button event data recorded in traffic signal controller logs. Every time a pedestrian push button is pressed in the state of Utah, this activity is recorded, and UDOT archives these traffic signal pedestrian actuation data for use in its Automated Traffic Signal Performance Measures (ATSPM) system. A previous UDOT research project developed methods to estimate pedestrian crossing volume
	Specifically, we develop direct-demand (log-linear regression) models that represent relationships between built environment variables (calculated at ¼- and ½-mile network buffers) and annual average daily and hourly estimated pedestrian volumes. We test many built environment variables with empirical and/or theoretical linkages with pedestrian activity. We also control spatial autocorrelation through the use of spatial error models, and validate our model results using k-fold cross-validation. To our knowl
	All results confirm theorized relationships: There is more pedestrian activity at intersections with greater population and employment densities, a larger proportion of 
	commercial and residential land uses, more connected street networks (with greater intersection density and percentage of four-way intersections) with greater transit access, more nearby services and amenities (e.g., parks and schools), and in lower-income neighborhoods with larger households and fewer vehicles. While several of these findings confirm evidence from previous research, others—most notably, those related to street network connectivity, specific destinations, and household income—are relatively
	Notably, we also find relevant day-of-week and time-of-day differences in relationships between pedestrian volumes and measures of the built environment. For example, schools attract pedestrian activity, but only on weekdays during daytime hours, and the coefficient for places of worship is higher in the weekend model. Employment density was more closely linked to pedestrian volumes during weekdays and daytime hours, while population density had a stronger association during evenings and weekends. K-fold cr
	Results demonstrate the value of these novel pedestrian signal data for planning purposes and offer support for built environment interventions and land use policies to encourage walkable communities. We also offer recommendations for using these estimates of pedestrian volumes for various other important transportation planning and engineering tasks, including pedestrian safety analysis, multimodal level-of-service calculation, health impact assessment, pedestrian design and infrastructure prioritization, 
	 
	1.0  INTRODUCTION 
	1.1  Problem Statement 
	Quantifying pedestrian volumes and levels of walking activity is critical for many transportation planning, engineering, and management tasks. Traffic safety analyses require estimates of pedestrian exposure to risk, and durations/distances of physically active transportation are inputs to transportation health impact assessments. Information on walking is also useful for analyzing pedestrian level/quality of service, designing pedestrian infrastructure, and prioritizing pedestrian investments. Furthermore,
	Pedestrian volume data can be collected. Nevertheless, traditional data collection methods for monitoring pedestrian traffic have limitations: They involve short durations, few locations, or samples of the population. Manual intersection or street segment counts are time consuming and often infeasible to conduct over long periods of time. Instruments such as infrared counters can record continuous data on trail users, but they are costly to deploy across multiple sites (Ryus et al., 2014). The passive colle
	Alternatively, pedestrian volume data can be modeled. Conventional methods of modeling roadway volumes are inappropriate for pedestrians, due to data and scale challenges with including pedestrians in regional travel-demand forecasting models (Singleton et al., 2018). Instead, planners interested in facility-specific information have turned to using direct-demand models (Kuzmyak et al., 2014; Munira and Sener, 2017). Direct-demand models predict pedestrian volumes using observed counts and measures of the s
	features affect pedestrian volumes and inform transportation and land-use planning and urban design strategies to promote walkable communities. Still, direct-demand models require large quantities of (pedestrian) estimation data in order to be generalizable beyond the few locations where they were developed, and they are often insensitive to temporal variations in walking activity. 
	One potential data source that is relatively ubiquitous in both time and space (available 24/7 at many intersections) is the high-resolution data logs from traffic signal controllers. Every time a pedestrian push button is pressed in the state of Utah, this activity is recorded, and UDOT archives these traffic signal pedestrian actuation data for use in its Automated Traffic Signal Performance Measures (ATSPM) system. The use of pedestrian signal data is a potentially rich source of information about levels
	Phase I of this research—Singleton, Runa & Humagain (2020), “Utilizing Archived Traffic Signal Performance Measures for Pedestrian Planning and Analysis” (UDOT Research report no. 
	Phase I of this research—Singleton, Runa & Humagain (2020), “Utilizing Archived Traffic Signal Performance Measures for Pedestrian Planning and Analysis” (UDOT Research report no. 
	UT-20.17
	UT-20.17

	)—developed methods to translate pedestrian traffic signal data into valuable information on pedestrian volumes at signalized intersections. Singleton et al. (2020) used one year of data from 1,522 Utah traffic signals and time series clustering to describe patterns of pedestrian signal activity. Based on these typologies, they randomly selected 90 Utah signals, used UDOT traffic cameras to record over 10,000 hours of video, and manually counted almost 175,000 pedestrians crossing at the intersections. Usin

	Phase II of this research—the present project—extends the capability of pedestrian volume estimation to unsignalized intersections. First, direct-demand models of pedestrian volumes are developed that represent theoretically consistent relationships between pedestrian crossing volumes and measures of the built environment, land use, and neighborhood sociodemographics at around 1,500 signalized intersections in Utah. Second, these models are 
	applied to additional built environment data to predict pedestrian volumes at over 62,000 unsignalized intersections in Utah. We expect that these volume estimates offer improved opportunities for pedestrian planning and operations as well as for health and safety analyses.  
	1.2  Objectives 
	The objective of this research is to examine relationships between the built environment and pedestrian activity through the development of direct-demand models of pedestrian volumes, taking advantage of a novel and relatively ubiquitous (in both time and space) source of pedestrian data. Specifically, we utilize estimates of pedestrian crossing volumes—taken from pedestrian push-button activity data from high-resolution traffic signal controller logs—and apply log-linear regression models for different tim
	1.3  Scope 
	This project accomplished this research objective through the following major tasks:  
	• Reviewing literature on pedestrian volume modeling studies, built environment predictors of pedestrian volumes, traffic signal-based measures of pedestrian activity, and direct-demand pedestrian volume modeling.  
	• Reviewing literature on pedestrian volume modeling studies, built environment predictors of pedestrian volumes, traffic signal-based measures of pedestrian activity, and direct-demand pedestrian volume modeling.  
	• Reviewing literature on pedestrian volume modeling studies, built environment predictors of pedestrian volumes, traffic signal-based measures of pedestrian activity, and direct-demand pedestrian volume modeling.  

	• Assembling pedestrian data and estimating pedestrian volumes at signalized intersections, using results from Phase I. This task involved processing of one year of ATSPM traffic signal data from 1,494 signalized intersections and applying the factoring methods developed during the Phase I project.  
	• Assembling pedestrian data and estimating pedestrian volumes at signalized intersections, using results from Phase I. This task involved processing of one year of ATSPM traffic signal data from 1,494 signalized intersections and applying the factoring methods developed during the Phase I project.  


	• Assembling and preparing geospatial information about signalized and unsignalized intersections in Utah. This information included local land use and built environment characteristics (e.g., residential density, businesses, schools, parks) as well as measures of the adjacent multimodal transportation system (e.g., transit service) and neighborhood sociodemographic characteristics (e.g., household income).  
	• Assembling and preparing geospatial information about signalized and unsignalized intersections in Utah. This information included local land use and built environment characteristics (e.g., residential density, businesses, schools, parks) as well as measures of the adjacent multimodal transportation system (e.g., transit service) and neighborhood sociodemographic characteristics (e.g., household income).  
	• Assembling and preparing geospatial information about signalized and unsignalized intersections in Utah. This information included local land use and built environment characteristics (e.g., residential density, businesses, schools, parks) as well as measures of the adjacent multimodal transportation system (e.g., transit service) and neighborhood sociodemographic characteristics (e.g., household income).  

	• Estimating models predicting pedestrian volumes at signalized intersections as a function of land use, built environment, and transportation system characteristics. These direct-demand models were log-linear, controlled spatial autocorrelation, and were segmented by day of the week and time of day.  
	• Estimating models predicting pedestrian volumes at signalized intersections as a function of land use, built environment, and transportation system characteristics. These direct-demand models were log-linear, controlled spatial autocorrelation, and were segmented by day of the week and time of day.  

	• Applying estimated models to unsignalized intersections and predicting pedestrian volumes at signalized and unsignalized intersections. This resulted in pedestrian volume estimates for over 62,000 unsignalized intersections in Utah. Model validation utilized a 10-fold cross-validation approach.  
	• Applying estimated models to unsignalized intersections and predicting pedestrian volumes at signalized and unsignalized intersections. This resulted in pedestrian volume estimates for over 62,000 unsignalized intersections in Utah. Model validation utilized a 10-fold cross-validation approach.  

	• Developing a prototype online tool and graphical interface to visualize estimated pedestrian volumes at signalized and unsignalized intersections. This visualization was an ArcGIS online map showing average estimated pedestrian volumes overall and for different days of the week and times of day.  
	• Developing a prototype online tool and graphical interface to visualize estimated pedestrian volumes at signalized and unsignalized intersections. This visualization was an ArcGIS online map showing average estimated pedestrian volumes overall and for different days of the week and times of day.  

	• Providing recommendations for implementation and future work.  
	• Providing recommendations for implementation and future work.  


	1.4  Outline of Report  
	This report is organized into the following chapters:  
	• Chapter 
	• Chapter 
	• Chapter 
	• Chapter 
	1.0
	1.0

	 provides an introduction to the research, including the problem statement, objectives, scope, and outline of the report.  


	• Chapter 
	• Chapter 
	• Chapter 
	2.0
	2.0

	 describes the research methods, including a literature review of pedestrian volume modeling studies, built environment predictors of pedestrian volumes, and traffic signal-based measures of pedestrian activity, as well as a description of direct-demand volume modeling.  



	• Chapter 
	• Chapter 
	• Chapter 
	• Chapter 
	3.0
	3.0

	 contains details about the data collection, including estimated pedestrian volumes from traffic signal data and built environment data.  


	• Chapter 
	• Chapter 
	• Chapter 
	4.0
	4.0

	 reports on data evaluation aspects, including results of the direct-demand models of daily and hourly pedestrian volumes, model validation results, and model application and visualization.  


	• Chapter 
	• Chapter 
	• Chapter 
	5.0
	5.0

	 offers conclusions, including key findings as well as study limitations and challenges.  


	• Chapter 
	• Chapter 
	• Chapter 
	6.0
	6.0

	 provides recommendations for implementation of the findings.  



	 
	2.0  RESEARCH METHODS 
	2.1  Overview 
	This chapter describes the research methods, including a literature review of pedestrian volume modeling studies, built environment predictors of pedestrian volumes, and traffic signal-based measures of pedestrian activity, as well as a description of direct-demand volume modeling. 
	2.2  Literature Review 
	Two general threads of research have investigated built environment correlates of pedestrian counts or volumes. One research path is motivated by developing models to predict pedestrian demand for use in various transportation engineering, planning, and safety analysis tasks. For example, Schneider et al. (2009) describe several applications of such models: to “quantify pedestrian exposure in safety analysis,” prioritize pedestrian projects, design pedestrian infrastructure, predict pedestrian volumes in th
	Two tables in this section summarize the methods, outcomes, and predictors used in studies modeling pedestrian volumes as a function of built environment measures. We focus on studies with models of pedestrian counts or volumes, not on literature using individual- or household-based measures of walking behavior. We also exclude studies that group walk and bicycle traffic together into one non-motorized mode. 
	2.2.1  Pedestrian Volume Modeling Studies 
	As shown in 
	As shown in 
	Table 2-1
	Table 2-1

	, most pedestrian volume direct-demand models utilize manually collected, short-duration counts of the number of people walking along street segments or crossing at intersections. Sometimes these counts are as short as 30 or even 10 minutes (or multiple 5-minute counts), but rarely do they exceed 12 hours. These short durations are not surprising, given the cost and effort of conducting manual pedestrian counts at multiple locations (Ryus et al., 2014). One exception is the one week of automated pedestrian 

	Table 2-1: Summary of Pedestrian Volume Modeling Studies 
	 
	 
	 
	 
	 

	Information 
	Information 

	 
	 

	 
	 

	Pedestrian 
	Pedestrian 

	 
	 

	 
	 

	Model 
	Model 

	 
	 



	Study 
	Study 
	Study 
	Study 

	Geography 
	Geography 

	Locations 
	Locations 

	Time 
	Time 

	Outcome 
	Outcome 

	Method 
	Method 

	Details 
	Details 

	Type 
	Type 

	Fit 
	Fit 


	Pushkarev and Zupan (1971) 
	Pushkarev and Zupan (1971) 
	Pushkarev and Zupan (1971) 

	Manhattan, New York City, New York, US 
	Manhattan, New York City, New York, US 

	≤605 block faces 
	≤605 block faces 

	1969 Apr–Jun 
	1969 Apr–Jun 

	Volume, instant 
	Volume, instant 

	AP 
	AP 

	Twice, WD, MD & PM 
	Twice, WD, MD & PM 

	L 
	L 

	0.23–0.61 
	0.23–0.61 


	Behnam and Patel (1977) 
	Behnam and Patel (1977) 
	Behnam and Patel (1977) 

	Downtown Milwaukee, Wisconsin, US 
	Downtown Milwaukee, Wisconsin, US 

	? street segments 
	? street segments 

	1971–1973 Sum 
	1971–1973 Sum 

	Volume, 1 hr 
	Volume, 1 hr 

	MC 
	MC 

	Multiple times 6 min, WD, DT 
	Multiple times 6 min, WD, DT 

	LL 
	LL 

	0.58 
	0.58 


	Hillier et al. (1993) 
	Hillier et al. (1993) 
	Hillier et al. (1993) 

	Central London, England, UK 
	Central London, England, UK 

	≤239 street segments 
	≤239 street segments 

	?? 
	?? 

	Volume 
	Volume 

	MC 
	MC 

	20-30 times, AM & MD & PM 
	20-30 times, AM & MD & PM 

	LL 
	LL 

	0.29–0.57 
	0.29–0.57 


	Penn et al. (1998) 
	Penn et al. (1998) 
	Penn et al. (1998) 

	Central London, England, UK 
	Central London, England, UK 

	7 street segments 
	7 street segments 

	?? 
	?? 

	Volume, 50 min 
	Volume, 50 min 

	MC 
	MC 

	Ten times 5 min, AM & MD & PM 
	Ten times 5 min, AM & MD & PM 

	CR 
	CR 

	0.98 
	0.98 




	Qin and Ivan (2001) 
	Qin and Ivan (2001) 
	Qin and Ivan (2001) 
	Qin and Ivan (2001) 
	Qin and Ivan (2001) 

	Rural Connecticut, US 
	Rural Connecticut, US 

	32 crossings 
	32 crossings 

	1999 May, Jun, Oct, Nov 
	1999 May, Jun, Oct, Nov 

	Crossing volume 
	Crossing volume 

	MC 
	MC 

	Twice 9.5 hr, WD & WE, DT 
	Twice 9.5 hr, WD & WE, DT 

	LL 
	LL 

	0.81–0.91 
	0.81–0.91 


	Desyllas et al. (2003) 
	Desyllas et al. (2003) 
	Desyllas et al. (2003) 

	Central London, England, UK 
	Central London, England, UK 

	231 street segments 
	231 street segments 

	1999 Aug, 2000 Mar, 2001 Jul 
	1999 Aug, 2000 Mar, 2001 Jul 

	Volume, 1 hr 
	Volume, 1 hr 

	MC 
	MC 

	Multiple 5 min, DT 
	Multiple 5 min, DT 

	LL 
	LL 

	0.82 
	0.82 


	Raford and Ragland (2004) 
	Raford and Ragland (2004) 
	Raford and Ragland (2004) 

	Oakland, California, US 
	Oakland, California, US 

	42 intersections 
	42 intersections 

	?? 
	?? 

	Volume, 1 year (extrapolated) 
	Volume, 1 year (extrapolated) 

	MC 
	MC 

	Multiple 2 hr, WD & WE, AM & PM 
	Multiple 2 hr, WD & WE, AM & PM 

	?? 
	?? 

	0.77 
	0.77 


	Liu and Griswold (2009) 
	Liu and Griswold (2009) 
	Liu and Griswold (2009) 

	San Francisco, California, US 
	San Francisco, California, US 

	63 intersections 
	63 intersections 

	2002 May, Jun, Aug, Sep 
	2002 May, Jun, Aug, Sep 

	Crossing volume 
	Crossing volume 

	MC 
	MC 

	Once 4 hr, WD, PM 
	Once 4 hr, WD, PM 

	L, SA 
	L, SA 

	0.75 
	0.75 


	Miranda-Moreno et al. (2011)   
	Miranda-Moreno et al. (2011)   
	Miranda-Moreno et al. (2011)   

	Montréal, Quebec, CA 
	Montréal, Quebec, CA 

	519 signalized intersections 
	519 signalized intersections 

	2003 Spr–Sum 
	2003 Spr–Sum 

	Volume 
	Volume 

	MC 
	MC 

	Three times 1 hr, WD, AM & MD & PM 
	Three times 1 hr, WD, AM & MD & PM 

	LL 
	LL 

	0.55 
	0.55 


	Raford and Ragland (2006) 
	Raford and Ragland (2006) 
	Raford and Ragland (2006) 

	Boston, Massachusetts, US 
	Boston, Massachusetts, US 

	82 locations 
	82 locations 

	2004 Aug 
	2004 Aug 

	Volume 
	Volume 

	MC 
	MC 

	24 times 5 min, WD & WE, DT 
	24 times 5 min, WD & WE, DT 

	?? 
	?? 

	0.79–0.86 
	0.79–0.86 


	Pulugurtha and Repaka (2013,  2008) 
	Pulugurtha and Repaka (2013,  2008) 
	Pulugurtha and Repaka (2013,  2008) 

	Charlotte, North Carolina, US 
	Charlotte, North Carolina, US 

	176 signalized intersections 
	176 signalized intersections 

	2005 
	2005 

	Volume, 12 hr 
	Volume, 12 hr 

	MC 
	MC 

	Once 12 hr, DT 
	Once 12 hr, DT 

	L 
	L 

	0.15–0.86 
	0.15–0.86 


	Rodríguez et al. (2009) 
	Rodríguez et al. (2009) 
	Rodríguez et al. (2009) 

	Bogotá, Distrito Capital, CO 
	Bogotá, Distrito Capital, CO 

	338 street segments 
	338 street segments 

	2005 Jun–Aug 
	2005 Jun–Aug 

	Volume, 10 min 
	Volume, 10 min 

	MC 
	MC 

	Once 10 min, WD, AM 
	Once 10 min, WD, AM 

	NB 
	NB 

	0.03 
	0.03 


	Ewing et al. (2016),  Ewing and Clemente (2013) 
	Ewing et al. (2016),  Ewing and Clemente (2013) 
	Ewing et al. (2016),  Ewing and Clemente (2013) 

	New York City, New York, US 
	New York City, New York, US 

	588 block faces 
	588 block faces 

	2006 Sum 
	2006 Sum 

	Volume 
	Volume 

	MC 
	MC 

	Four times, WD, DT 
	Four times, WD, DT 

	NB, SA 
	NB, SA 

	?? 
	?? 


	Arnold et al. (2010) 
	Arnold et al. (2010) 
	Arnold et al. (2010) 

	San Diego County, California, US 
	San Diego County, California, US 

	80 locations 
	80 locations 

	2007 Jul–Aug, 2008 
	2007 Jul–Aug, 2008 

	Volume, 2 hr (adjusted) 
	Volume, 2 hr (adjusted) 

	MC 
	MC 

	Twice 2 hr, WD & WE, AM or MD or PM 
	Twice 2 hr, WD & WE, AM or MD or PM 

	LL 
	LL 

	0.52 
	0.52 


	Hajrasouliha and Yin (2015) 
	Hajrasouliha and Yin (2015) 
	Hajrasouliha and Yin (2015) 

	Buffalo, New York, US 
	Buffalo, New York, US 

	302 street segments 
	302 street segments 

	2007–2010 
	2007–2010 

	Volume 
	Volume 

	MC 
	MC 

	Twice, WD, DT 
	Twice, WD, DT 

	L 
	L 

	?? 
	?? 


	Hankey et al. (2012) 
	Hankey et al. (2012) 
	Hankey et al. (2012) 

	Minneapolis, Minnesota, US 
	Minneapolis, Minnesota, US 

	259 street/path segments 
	259 street/path segments 

	2007–2010 Sep 
	2007–2010 Sep 

	Volume, 12 hr (extrapolated) 
	Volume, 12 hr (extrapolated) 

	MC 
	MC 

	2 hr or 12 hr, WD, PM or DT 
	2 hr or 12 hr, WD, PM or DT 

	NB 
	NB 

	0.42 
	0.42 


	Hankey and Lindsey (2016) 
	Hankey and Lindsey (2016) 
	Hankey and Lindsey (2016) 

	Minneapolis, Minnesota, US 
	Minneapolis, Minnesota, US 

	471 street/trail segments 
	471 street/trail segments 

	2007–2014 Sep 
	2007–2014 Sep 

	Volume, 1 hr 
	Volume, 1 hr 

	MC 
	MC 

	Various 2 hr, PM 
	Various 2 hr, PM 

	LL 
	LL 

	0.50–0.53 
	0.50–0.53 


	Tabeshian and Kattan (2014) 
	Tabeshian and Kattan (2014) 
	Tabeshian and Kattan (2014) 

	Calgary, Alberta, CA 
	Calgary, Alberta, CA 

	34 intersections 
	34 intersections 

	2007–2012 
	2007–2012 

	Volume, 2 hr 
	Volume, 2 hr 

	MC 
	MC 

	Three times 2 hr, AM & MD & PM 
	Three times 2 hr, AM & MD & PM 

	L, P 
	L, P 

	0.79–0.92 
	0.79–0.92 


	Schneider et al. (2009) 
	Schneider et al. (2009) 
	Schneider et al. (2009) 

	Alameda County, California, US 
	Alameda County, California, US 

	50 intersections 
	50 intersections 

	2008 Apr–Jun 
	2008 Apr–Jun 

	Crossing volume, 1 week (extrapolated) 
	Crossing volume, 1 week (extrapolated) 

	MC 
	MC 

	Twice 2 hr, WD & WE, AM or MD or PM 
	Twice 2 hr, WD & WE, AM or MD or PM 

	L 
	L 

	0.89 
	0.89 




	Miranda-Moreno and Fernandes (2011) 
	Miranda-Moreno and Fernandes (2011) 
	Miranda-Moreno and Fernandes (2011) 
	Miranda-Moreno and Fernandes (2011) 
	Miranda-Moreno and Fernandes (2011) 

	Montréal, Quebec, CA 
	Montréal, Quebec, CA 

	1,018 signalized intersections 
	1,018 signalized intersections 

	2008-2009 
	2008-2009 

	Crossing volume 
	Crossing volume 

	MC 
	MC 

	Once 8 hr, WD, AM & MD & PM 
	Once 8 hr, WD, AM & MD & PM 

	LL 
	LL 

	0.58 
	0.58 


	Ozbil et al. (2011) 
	Ozbil et al. (2011) 
	Ozbil et al. (2011) 

	Atlanta, Georgia, US 
	Atlanta, Georgia, US 

	157 locations 
	157 locations 

	?? 
	?? 

	Volume 
	Volume 

	MC 
	MC 

	20 times (or ten times 20 min), DT & PM 
	20 times (or ten times 20 min), DT & PM 

	LL 
	LL 

	0.82–0.84 
	0.82–0.84 


	Kang (2018, 2017, 2015), Kim et al. (2019, 2017), Sung et al. (2013, 2015) 
	Kang (2018, 2017, 2015), Kim et al. (2019, 2017), Sung et al. (2013, 2015) 
	Kang (2018, 2017, 2015), Kim et al. (2019, 2017), Sung et al. (2013, 2015) 

	Seoul, KR 
	Seoul, KR 

	≤9,850 street segments 
	≤9,850 street segments 

	2009 Aug–Nov 
	2009 Aug–Nov 

	Volume 
	Volume 

	MC 
	MC 

	Six times 14 hr, WD & WE, DT 
	Six times 14 hr, WD & WE, DT 

	LL, SA 
	LL, SA 

	0.24–0.81 
	0.24–0.81 


	Schneider et al. (2012) 
	Schneider et al. (2012) 
	Schneider et al. (2012) 

	San Francisco, California, US 
	San Francisco, California, US 

	50 intersections 
	50 intersections 

	2009 Sep, 2010 Jul–Aug 
	2009 Sep, 2010 Jul–Aug 

	Crossing volume, 1 year (extrapolated) 
	Crossing volume, 1 year (extrapolated) 

	MC 
	MC 

	Once 2 hr, WD, AM or PM 
	Once 2 hr, WD, AM or PM 

	LL 
	LL 

	0.80 
	0.80 


	Ameli et al. (2015) 
	Ameli et al. (2015) 
	Ameli et al. (2015) 

	Downtown Salt Lake City, Utah, US 
	Downtown Salt Lake City, Utah, US 

	179 block faces 
	179 block faces 

	2012 Sep–Oct 
	2012 Sep–Oct 

	Volume 
	Volume 

	MC 
	MC 

	Twice 30 min, WD, MD & PM 
	Twice 30 min, WD, MD & PM 

	NB 
	NB 

	?? 
	?? 


	Maxwell (2016) 
	Maxwell (2016) 
	Maxwell (2016) 

	Glasgow, Scotland, UK 
	Glasgow, Scotland, UK 

	693 street segments 
	693 street segments 

	2014–2015 Sum 
	2014–2015 Sum 

	Volume 
	Volume 

	MC 
	MC 

	Four times, WD, DT 
	Four times, WD, DT 

	NB, SA 
	NB, SA 

	?? 
	?? 


	Sanders et al. (2017) 
	Sanders et al. (2017) 
	Sanders et al. (2017) 

	Seattle, Washington, US 
	Seattle, Washington, US 

	49 intersections 
	49 intersections 

	?? 
	?? 

	Volume, 1 year (extrapolated) 
	Volume, 1 year (extrapolated) 

	MC 
	MC 

	??, PM 
	??, PM 

	P 
	P 

	0.76 
	0.76 


	Hankey et al. (2017), Lu et al. (2018) 
	Hankey et al. (2017), Lu et al. (2018) 
	Hankey et al. (2017), Lu et al. (2018) 

	Blacksburg, Virginia, US 
	Blacksburg, Virginia, US 

	72 locations 
	72 locations 

	2015 Apr–Oct 
	2015 Apr–Oct 

	Volume, 1 day & 1 hour (averaged) 
	Volume, 1 day & 1 hour (averaged) 

	AC 
	AC 

	Once 1 wk 
	Once 1 wk 

	LL 
	LL 

	0.71, 0.00–0.78 
	0.71, 0.00–0.78 


	Park et al. (2019) 
	Park et al. (2019) 
	Park et al. (2019) 

	Salt Lake County, Utah, US 
	Salt Lake County, Utah, US 

	881 block faces 
	881 block faces 

	2015 
	2015 

	Volume 
	Volume 

	MC 
	MC 

	Four times, WD, DT 
	Four times, WD, DT 

	NB, SA 
	NB, SA 

	?? 
	?? 


	Hamidi and Moazzeni (2019) 
	Hamidi and Moazzeni (2019) 
	Hamidi and Moazzeni (2019) 

	Downtown Dallas, Texas, US 
	Downtown Dallas, Texas, US 

	402 block faces 
	402 block faces 

	2016 Spr-Sum 
	2016 Spr-Sum 

	Volume, 30 min 
	Volume, 30 min 

	MC 
	MC 

	Once 30 min, WD, PM 
	Once 30 min, WD, PM 

	NB, SA 
	NB, SA 

	?? 
	?? 


	Le et al. (2020) 
	Le et al. (2020) 
	Le et al. (2020) 

	Dallas, Texas, US 
	Dallas, Texas, US 

	196 intersections 
	196 intersections 

	2016 
	2016 

	Volume 1 day (extrapolated) 
	Volume 1 day (extrapolated) 

	MC 
	MC 

	Once 2 hr or 8 hr 
	Once 2 hr or 8 hr 

	NB 
	NB 

	?? 
	?? 


	Griswold et al. (2019) 
	Griswold et al. (2019) 
	Griswold et al. (2019) 

	California, US 
	California, US 

	1,270 intersections 
	1,270 intersections 

	2006–2016 
	2006–2016 

	Crossing volume, 1 year (extrapolated) 
	Crossing volume, 1 year (extrapolated) 

	MC 
	MC 

	Various 1-86 hr, most two times 2 hr, AM & PM 
	Various 1-86 hr, most two times 2 hr, AM & PM 

	LL 
	LL 

	0.71 
	0.71 


	Schneider et al. (2021) 
	Schneider et al. (2021) 
	Schneider et al. (2021) 

	Milwaukee, Wisconsin, US 
	Milwaukee, Wisconsin, US 

	260 intersections 
	260 intersections 

	2013–2018 
	2013–2018 

	Crossing volume, 1 year (extrapolated) 
	Crossing volume, 1 year (extrapolated) 

	MC 
	MC 

	Various, many 13 hr, AM & MD & PM 
	Various, many 13 hr, AM & MD & PM 

	NB 
	NB 

	?? 
	?? 


	This study 
	This study 
	This study 

	Utah, US 
	Utah, US 

	1,020 signalized intersections 
	1,020 signalized intersections 

	2017 Jun – 2018 Jul 
	2017 Jun – 2018 Jul 

	Estimated volume,  1 day & 1 hour (averaged) 
	Estimated volume,  1 day & 1 hour (averaged) 

	AC 
	AC 

	Continuous 
	Continuous 

	LL, SA 
	LL, SA 

	 
	 




	Notes:  ?? = unknown.  
	Method: AC = automated counts, AP = aerial photos, MC = manual counts.  
	Details: WD = weekday, WE = weekend, AM = morning peak, MD = midday, PM = evening peak, DT = daytime.  
	Type:  L = linear, LL = log-linear (linear with natural log transformation), CR = linear with cube-root transformation, P = Poisson, NB = negative binomial,  SA = checked or corrected for spatial autocorrelation.  
	Fit:  R2 or pseudo-R2. 
	 
	The data collection methods used to obtain pedestrian volumes for most previous research led to some limitations in the accuracy, generalizability, and sensitivity of model results. First, the use of short-duration counts to represent average or typical volumes—even when adjusted for time of day and weather using a smaller number of longer-duration automated counts—adds measurement error to the dependent variable. This potentially affects the value and significance of estimated associations. Second, the sho
	2.2.2  Built Environment Predictors in Pedestrian Volume Modeling Studies 
	In pedestrian volume models, some built environment measures (see 
	In pedestrian volume models, some built environment measures (see 
	Table 2-2
	Table 2-2

	) are consistently related to walking in expected directions, while results for other variables are more equivocal. More often than not, studies find positive associations with residential and employment density. Walking is also closely linked to public transit: Locations closer to transit stops/stations and with more transit stops nearby tend to see greater pedestrian volumes. Diversity measures like land-use mix and entropy are sometimes positively related to pedestrian volumes, but studies also find insi

	a street; Park et al., 2019). A few studies have found that pedestrian volumes are significantly explained by socioeconomic and environmental variables like household size, household incomes, parks, and slope. 
	Table 2-2: Summary of Built Environment Predictors of Pedestrian Volumes 
	Variable 
	Variable 
	Variable 
	Variable 
	Variable 

	Dir.a 
	Dir.a 

	Studies 
	Studies 



	Density 
	Density 
	Density 
	Density 

	 
	 

	 
	 


	Floor area ratio or building density 
	Floor area ratio or building density 
	Floor area ratio or building density 

	+ 
	+ 

	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hamidi and Moazzeni, 2019; Maxwell, 2016; Ozbil et al., 2011; Park et al., 2019; Sung et al., 2013) 
	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hamidi and Moazzeni, 2019; Maxwell, 2016; Ozbil et al., 2011; Park et al., 2019; Sung et al., 2013) 


	 
	 
	 

	ns / − 
	ns / − 

	(Ameli et al., 2015; Kim et al., 2017; Park et al., 2019; Sung et al., 2013) 
	(Ameli et al., 2015; Kim et al., 2017; Park et al., 2019; Sung et al., 2013) 


	Population density, household density, or residential space density 
	Population density, household density, or residential space density 
	Population density, household density, or residential space density 

	+ 
	+ 

	(Ameli et al., 2015; Arnold et al., 2010; Behnam and Patel, 1977; Ewing et al., 2016; Ewing and Clemente, 2013; Griswold et al., 2019; Hankey and Lindsey, 2016; Hankey et al., 2017; Kim et al., 2019; Liu and Griswold, 2009; Lu et al., 2018; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Ozbil et al., 2011; Pulugurtha and Repaka, 2013, 2008; Raford and Ragland, 2004; Sanders et al., 2017; Schneider et al., 2009, 2012, 2021; Tabeshian and Kattan, 2014) 
	(Ameli et al., 2015; Arnold et al., 2010; Behnam and Patel, 1977; Ewing et al., 2016; Ewing and Clemente, 2013; Griswold et al., 2019; Hankey and Lindsey, 2016; Hankey et al., 2017; Kim et al., 2019; Liu and Griswold, 2009; Lu et al., 2018; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Ozbil et al., 2011; Pulugurtha and Repaka, 2013, 2008; Raford and Ragland, 2004; Sanders et al., 2017; Schneider et al., 2009, 2012, 2021; Tabeshian and Kattan, 2014) 


	 
	 
	 

	ns / − 
	ns / − 

	(Hajrasouliha and Yin, 2015; Hankey et al., 2012; Kang, 2017, 2015; Maxwell, 2016; Qin and Ivan, 2001; Park et al., 2019; Pulugurtha and Repaka, 2013, 2008; Rodríguez et al., 2009) 
	(Hajrasouliha and Yin, 2015; Hankey et al., 2012; Kang, 2017, 2015; Maxwell, 2016; Qin and Ivan, 2001; Park et al., 2019; Pulugurtha and Repaka, 2013, 2008; Rodríguez et al., 2009) 


	Employment density, employment access, or commercial/office/non-residential space density 
	Employment density, employment access, or commercial/office/non-residential space density 
	Employment density, employment access, or commercial/office/non-residential space density 

	+ 
	+ 

	(Arnold et al., 2010; Behnam and Patel, 1977; Griswold et al., 2019; Hajrasouliha and Yin, 2015; Hankey and Lindsey, 2016; Kang, 2017, 2015; Kim et al., 2019; Liu and Griswold, 2009; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Ozbil et al., 2011; Park et al., 2019; Pulugurtha and Repaka, 2013; Pushkarev and Zupan, 1971; Raford and Ragland, 2004; Sanders et al., 2017; Schneider et al., 2009, 2012, 2021; Sung et al., 2013; Tabeshian and Kattan, 2014)  
	(Arnold et al., 2010; Behnam and Patel, 1977; Griswold et al., 2019; Hajrasouliha and Yin, 2015; Hankey and Lindsey, 2016; Kang, 2017, 2015; Kim et al., 2019; Liu and Griswold, 2009; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Ozbil et al., 2011; Park et al., 2019; Pulugurtha and Repaka, 2013; Pushkarev and Zupan, 1971; Raford and Ragland, 2004; Sanders et al., 2017; Schneider et al., 2009, 2012, 2021; Sung et al., 2013; Tabeshian and Kattan, 2014)  


	 
	 
	 

	ns / − 
	ns / − 

	(Hankey et al., 2012; Park et al., 2019; Pulugurtha and Repaka, 2013, 2008; Rodríguez et al., 2009; Sung et al., 2013) 
	(Hankey et al., 2012; Park et al., 2019; Pulugurtha and Repaka, 2013, 2008; Rodríguez et al., 2009; Sung et al., 2013) 


	Diversity 
	Diversity 
	Diversity 

	 
	 

	 
	 


	Land-use mix, entropy, balance, or % retail 
	Land-use mix, entropy, balance, or % retail 
	Land-use mix, entropy, balance, or % retail 

	+ 
	+ 

	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019; Liu and Griswold, 2009; Park et al., 2019; Sung et al., 2013) 
	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019; Liu and Griswold, 2009; Park et al., 2019; Sung et al., 2013) 


	 
	 
	 

	ns / − 
	ns / − 

	(Ameli et al., 2015; Arnold et al., 2010; Ewing et al., 2016; Ewing and Clemente, 2013; Kang, 2018, 2017, 2015; Kim et al., 2019, 2017; Maxwell, 2016; Park et al., 2019) 
	(Ameli et al., 2015; Arnold et al., 2010; Ewing et al., 2016; Ewing and Clemente, 2013; Kang, 2018, 2017, 2015; Kim et al., 2019, 2017; Maxwell, 2016; Park et al., 2019) 


	Transit 
	Transit 
	Transit 

	 
	 

	 
	 


	Distance to nearest rail/bus stop/station 
	Distance to nearest rail/bus stop/station 
	Distance to nearest rail/bus stop/station 

	− 
	− 

	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hamidi and Moazzeni, 2019; Kang, 2017, 2015; Kim et al., 2019, 2017; Maxwell, 2016; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Pushkarev and Zupan, 1971; Raford and Ragland, 2006; Sung et al., 2013, 2015) 
	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hamidi and Moazzeni, 2019; Kang, 2017, 2015; Kim et al., 2019, 2017; Maxwell, 2016; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Pushkarev and Zupan, 1971; Raford and Ragland, 2006; Sung et al., 2013, 2015) 


	 
	 
	 

	ns / + 
	ns / + 

	(Hankey et al., 2012; Park et al., 2019; Raford and Ragland, 2006; Rodríguez et al., 2009) 
	(Hankey et al., 2012; Park et al., 2019; Raford and Ragland, 2006; Rodríguez et al., 2009) 


	Transit stop density 
	Transit stop density 
	Transit stop density 

	+ 
	+ 

	(Hankey and Lindsey, 2016; Hankey et al., 2017; Liu and Griswold, 2009; Lu et al., 2018; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Park et al., 2019; Pulugurtha and Repaka, 2013, 2008; Schneider et al., 2009, 2021; Sung et al., 2013; Tabeshian and Kattan, 2014) 
	(Hankey and Lindsey, 2016; Hankey et al., 2017; Liu and Griswold, 2009; Lu et al., 2018; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Park et al., 2019; Pulugurtha and Repaka, 2013, 2008; Schneider et al., 2009, 2021; Sung et al., 2013; Tabeshian and Kattan, 2014) 


	 
	 
	 

	ns / − 
	ns / − 

	(Kang, 2017, 2015; Le et al., 2020) 
	(Kang, 2017, 2015; Le et al., 2020) 


	Street network design 
	Street network design 
	Street network design 

	 
	 

	 
	 


	Intersection density 
	Intersection density 
	Intersection density 

	+ 
	+ 

	(Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019) 
	(Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019) 




	 
	 
	 
	 
	 

	ns / − 
	ns / − 

	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hankey and Lindsey, 2016; Hankey et al., 2017; Kang, 2018, 2017, 2015; Lu et al., 2018; Maxwell, 2016; Park et al., 2020; Sung et al., 2013) 
	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hankey and Lindsey, 2016; Hankey et al., 2017; Kang, 2018, 2017, 2015; Lu et al., 2018; Maxwell, 2016; Park et al., 2020; Sung et al., 2013) 


	% 4-way intersections 
	% 4-way intersections 
	% 4-way intersections 

	+ 
	+ 

	(Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Park et al., 2019) 
	(Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Park et al., 2019) 


	 
	 
	 

	ns / − 
	ns / − 

	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Maxwell, 2016; Park et al., 2019; Sung et al., 2013) 
	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Maxwell, 2016; Park et al., 2019; Sung et al., 2013) 


	Block length 
	Block length 
	Block length 

	+ 
	+ 

	(Ewing et al., 2016; Ewing and Clemente, 2013; Maxwell, 2016; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Park et al., 2019; Tabeshian and Kattan, 2014) 
	(Ewing et al., 2016; Ewing and Clemente, 2013; Maxwell, 2016; Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; Park et al., 2019; Tabeshian and Kattan, 2014) 


	 
	 
	 

	ns / − 
	ns / − 

	(Ameli et al., 2015; Hamidi and Moazzeni, 2019; Park et al., 2019) 
	(Ameli et al., 2015; Hamidi and Moazzeni, 2019; Park et al., 2019) 


	Space syntax (integration, reach, betweenness, etc.) 
	Space syntax (integration, reach, betweenness, etc.) 
	Space syntax (integration, reach, betweenness, etc.) 

	+ 
	+ 

	(Hajrasouliha and Yin, 2015; Hillier et al., 1993; Kang, 2018, 2017, 2015; Ozbil et al., 2011; Penn et al., 1998; Raford and Ragland, 2006, 2004) 
	(Hajrasouliha and Yin, 2015; Hillier et al., 1993; Kang, 2018, 2017, 2015; Ozbil et al., 2011; Penn et al., 1998; Raford and Ragland, 2006, 2004) 


	 
	 
	 

	ns / − 
	ns / − 

	(Kang, 2017, 2015) 
	(Kang, 2017, 2015) 


	Socioeconomics 
	Socioeconomics 
	Socioeconomics 

	 
	 

	 
	 


	Household size 
	Household size 
	Household size 

	+ 
	+ 

	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Park et al., 2019)  
	(Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Park et al., 2019)  


	 
	 
	 

	ns / − 
	ns / − 

	(Hamidi and Moazzeni, 2019; Maxwell, 2016) 
	(Hamidi and Moazzeni, 2019; Maxwell, 2016) 


	Mean/median income 
	Mean/median income 
	Mean/median income 

	− 
	− 

	(Hankey et al., 2017; Lu et al., 2018; Park et al., 2019; Pulugurtha and Repaka, 2013) 
	(Hankey et al., 2017; Lu et al., 2018; Park et al., 2019; Pulugurtha and Repaka, 2013) 


	 
	 
	 

	ns / + 
	ns / + 

	(Hankey et al., 2012; Hankey and Lindsey, 2016; Pulugurtha and Repaka, 2013, 2008; Rodríguez et al., 2009; Schneider et al., 2021; Tabeshian and Kattan, 2014) 
	(Hankey et al., 2012; Hankey and Lindsey, 2016; Pulugurtha and Repaka, 2013, 2008; Rodríguez et al., 2009; Schneider et al., 2021; Tabeshian and Kattan, 2014) 


	Environmental 
	Environmental 
	Environmental 

	 
	 

	 
	 


	Park density or proximity 
	Park density or proximity 
	Park density or proximity 

	+ 
	+ 

	(Kang, 2017, 2015) 
	(Kang, 2017, 2015) 


	 
	 
	 

	ns / − 
	ns / − 

	(Kang, 2017, 2015; Miranda-Moreno and Fernandes, 2011; Schneider et al., 2021; Sung et al., 2013) 
	(Kang, 2017, 2015; Miranda-Moreno and Fernandes, 2011; Schneider et al., 2021; Sung et al., 2013) 


	Slope or grade 
	Slope or grade 
	Slope or grade 

	− 
	− 

	(Kang, 2018, 2017, 2015; Kim et al., 2019, 2017; Liu and Griswold, 2009; Schneider et al., 2012; Sung et al., 2013, 2015) 
	(Kang, 2018, 2017, 2015; Kim et al., 2019, 2017; Liu and Griswold, 2009; Schneider et al., 2012; Sung et al., 2013, 2015) 


	 
	 
	 

	ns / + 
	ns / + 

	(Griswold et al., 2019) 
	(Griswold et al., 2019) 




	a Association with pedestrian volume: “+” positive, “–” negative, “ns” not statistically significant.  
	 
	2.2.3  Traffic Signal-Based Measures of Pedestrian Activity 
	In this study, we mitigate some of these limitations by utilizing a new source of pedestrian data: estimated pedestrian crossing volumes at signalized intersections, taken from pedestrian push-button events recorded in archived high-resolution traffic signal controller logs (Sturdevant et al., 2012). Assuming a traffic signal includes walk indications and pedestrian detection (usually push-buttons), at least two relevant pedestrian events can be recorded. Event code 90 (“pedestrian detector on”) occurs when
	recent years, several studies have investigated the use of pedestrian signal data for different purposes, including for pedestrian volume estimation (Blanc et al., 2015; Day et al., 2011; Kothuri et al., 2017; Li and Wu, 2021; Noyce and Bentzen, 2005; Singleton and Runa, 2021). More generally, high-resolution traffic signal event data are beginning to be used in a variety of other research and operational contexts (Wu and Liu, 2014), including through Automated Traffic Signal Performance Measures (ATSPM) sy
	To our knowledge, this is the first study to relate traffic signal-based measures of pedestrian activity with built environment characteristics. Recall the three limitations of the short-duration manual count pedestrian volume data typically used in prior built environment direct-demand models: measurement error due to factoring, an inability to model temporal variations, and the small number of locations studied. Since traffic signal data are recorded continuously (24 hours a day, 365 days a year), they ca
	A recent large-scale research effort in Utah investigating the feasibility of pedestrian traffic signal data for pedestrian volume estimation found similar levels of accuracy. Singleton et al. (2020; Singleton and Runa, 2021) collected traffic signal data as well as video recordings of pedestrian crossing events at 90 randomly selected signalized intersections across Utah in 2019. Almost 175,000 pedestrians were manually counted during more than 10,000 hours of video, covering different months, weekdays, an
	and unique pedestrian detections (removing those within 15 seconds of another detection)). For ease of application, the models did not include traffic volumes or neighborhood socioeconomic/environmental characteristics, although they did account for non-linear relationships between push-button use and pedestrian volumes (high vs. low pedestrian activity signal) and different traffic signal operations (phase on pedestrian recall or not, short vs. long average cycle length; HAWK signal vs. traditional signal)
	2.3  Direct-Demand Volume Modeling 
	As previously mentioned in Sections 
	As previously mentioned in Sections 
	1.1
	1.1

	 and 
	2.2
	2.2

	, direct-demand modeling is a frequently used approach for estimating non-motorized travel (Kuzmyak et al., 2014), including pedestrian volumes. Direct-demand models predict pedestrian volumes using observed counts and measures of the surrounding streetscape, land uses, built environment, and street network. Such models help to understand how environmental features affect pedestrian volumes and inform transportation and land-use planning and urban design strategies to promote walkable communities. In the fo

	2.3.1  Log-Linear Regression 
	Consistent with many other studies using built environment characteristics to predict pedestrian volumes (see 
	Consistent with many other studies using built environment characteristics to predict pedestrian volumes (see 
	Table 2-1
	Table 2-1

	), we employed a log-linear regression model in which our dependent variable is transformed using the natural log function. In general, log-linear regression 

	is used to predict a dependent variable (which may be skewed or the result of count data) using a variety of categorical or continuous independent variable predictors. Specifically:  log(𝑌𝑖)=𝛽0+𝛽1𝑋𝑖+𝜀𝑖 
	where log(𝑌𝑖) is the log-transformed dependent variable 𝑌𝑖 (in our case, annual average daily pedestrian (AADP) crossing volume at an intersection i), 𝛽0 is an intercept, 𝛽1 is a slope coefficient associated with an independent variable 𝑋𝑖 (in our case, one of several built environment characteristics), and 𝜀𝑖 is a random error term that is normally distributed. The dependent and independent variables (e.g., density, household attributes, land use, local destinations) are introduced in Chapter 
	where log(𝑌𝑖) is the log-transformed dependent variable 𝑌𝑖 (in our case, annual average daily pedestrian (AADP) crossing volume at an intersection i), 𝛽0 is an intercept, 𝛽1 is a slope coefficient associated with an independent variable 𝑋𝑖 (in our case, one of several built environment characteristics), and 𝜀𝑖 is a random error term that is normally distributed. The dependent and independent variables (e.g., density, household attributes, land use, local destinations) are introduced in Chapter 
	3.0
	3.0

	. 

	We decided against applying a negative binomial (or Poisson-gamma mixture) regression model—traditionally used to model count data—because our pedestrian data are not actually count data; instead, they are averages of counts. We used the log transformation because our data are strictly positive and are positively skewed (
	We decided against applying a negative binomial (or Poisson-gamma mixture) regression model—traditionally used to model count data—because our pedestrian data are not actually count data; instead, they are averages of counts. We used the log transformation because our data are strictly positive and are positively skewed (
	Figure 2-1
	Figure 2-1

	). An implication of the log-transformed dependent variable is that we can interpret our estimated coefficients (when exponentiated) as proportional or percentage changes (rather than absolute changes) in pedestrian signal activity due to changes to our independent variables. 

	 
	Figure
	 
	Figure
	Figure 2-1: Histogram of Annual Average Daily Pedestrian (AADP) Crossing Volume 
	(Top: AADP; Bottom: Log-Transformed AADP; Dashed Vertical Line: Mean) 
	 
	2.3.2  Spatial Lag or Spatial Error Model 
	The pedestrian data in this study may have an issue of spatial autocorrelation, meaning that the estimated pedestrian activity at one signal is correlated with activity at nearby signals. Reasons for this might include walk trips that extend from one block to the next, similar demographics or urban form characteristics, or a large-scale destination in one block (e.g., a regional park, convention center, or theater). Moran’s I statistic is a commonly used measure to check for spatial autocorrelation. Any spa
	controlling for the spatial autocorrelation, Moran’s I for model residuals in this study (p < .001) indicated a strongly positive spatial relationship.  
	The spatial lag or error model can be used as a robust tool to deal with the spatial autocorrelation issue in ordinary least squares (OLS) regression. The Lagrange multiplier test is used to assess whether the autocorrelation is in the dependent variable or in the errors and helps in the choice of a spatial regression model. The robust Lagrange multiplier test indicated a spatial error model as the most suitable method, and thus, we employed spatial error models that treat spatial autocorrelation between th
	2.3.3  Model Validation 
	To test how well our models can predict actual pedestrian volumes, we evaluated the predictive performance of our models by running k-fold cross-validation (Fielding and Bell, 1997; Hair et al., 2006). Using the same data to estimate parameters and to test predictive accuracy may overestimate model validity. In k-fold cross-validation, the data are divided into k equal partitions. In this study, data were randomly divided into ten folds: 90% of the data (training data) used for model fitting and 10% of the 
	2.4  Summary 
	Our review of pedestrian volume modeling studies found that most direct-demand models utilized manually collected, short-duration pedestrian counts at only a few dozen to a few hundred locations. Only one study used one week of automated counts, while only three studies used data from more than 1,000 sites. These practices result in study limitations: measurement error in the dependent variable, lower statistical power and lack of generalizability, and inability 
	to model temporal variations in built environment relationships with pedestrian volumes. Our research addresses many of these limitations through the use of a year’s worth of data from almost 1,500 signalized intersections. Research on traffic signal-based measures of pedestrian activity suggests that they are capable of predicting pedestrian volumes with reasonable accuracy. When conducting direct-demand pedestrian volume modeling, log-linear (or negative binomial) regression and accounting for spatial aut
	 
	3.0  DATA COLLECTION 
	3.1  Overview 
	This chapter contains details about the data collection, including estimated pedestrian volumes from traffic signal data and built environment data. 
	3.2  Estimated Pedestrian Volumes from Traffic Signal Data 
	The study area includes the six most populous counties in Utah: Salt Lake, Utah, Davis, Weber, Washington, and Cache. Cumulatively, these six counties comprise 84% of Utah’s population and contain most of the roughly 2,100 traffic signals in the state. 
	The study area includes the six most populous counties in Utah: Salt Lake, Utah, Davis, Weber, Washington, and Cache. Cumulatively, these six counties comprise 84% of Utah’s population and contain most of the roughly 2,100 traffic signals in the state. 
	Figure 3-1
	Figure 3-1

	 shows a map of the traffic signals located within the six study counties in Utah. The Utah Department of Transportation (UDOT) has helped lead the development and deployment of the ATSPM system (Day et al., 2016) through which archived traffic signal controller event logs can be accessed. As of Fall 2018, UDOT was actively archiving data from more than 1,900 state- and locally owned signals in a central database (Taylor and Mackey, 2018). 

	 
	 
	Figure
	Figure 3-1: Map of Signalized Intersections in the Six Most Populous Counties in Utah 
	 
	Our pedestrian volume data are estimates of annual average daily pedestrian (AADP) crossing volumes at signalized intersections, derived from pedestrian activity events recorded in high-resolution traffic signal controller event logs. For this study, we obtained one year—01 July 2017 through 30 June 2018—of pedestrian data from all traffic signals in our study area. After cleaning the data to remove missing observations, we applied the pedestrian volume estimation methods developed by Singleton et al. (2020
	Our pedestrian volume data are estimates of annual average daily pedestrian (AADP) crossing volumes at signalized intersections, derived from pedestrian activity events recorded in high-resolution traffic signal controller event logs. For this study, we obtained one year—01 July 2017 through 30 June 2018—of pedestrian data from all traffic signals in our study area. After cleaning the data to remove missing observations, we applied the pedestrian volume estimation methods developed by Singleton et al. (2020
	Table 3-1
	Table 3-1

	. 

	Table 3-1: Descriptive Statistics for Dependent Variables 
	Variable  
	Variable  
	Variable  
	Variable  
	Variable  

	Min 
	Min 

	Med 
	Med 

	Max 
	Max 

	Mean 
	Mean 

	SD 
	SD 



	Estimated annual average daily pedestrians (AADP) 
	Estimated annual average daily pedestrians (AADP) 
	Estimated annual average daily pedestrians (AADP) 
	Estimated annual average daily pedestrians (AADP) 

	1.08 
	1.08 

	116.13 
	116.13 

	6737.22 
	6737.22 

	267.28 
	267.28 

	519.00 
	519.00 


	Weekdays (Monday–Friday) 
	Weekdays (Monday–Friday) 
	Weekdays (Monday–Friday) 

	1.12 
	1.12 

	133.15 
	133.15 

	7547.23 
	7547.23 

	300.66 
	300.66 

	598.50 
	598.50 


	Weekends (Saturday–Sunday) 
	Weekends (Saturday–Sunday) 
	Weekends (Saturday–Sunday) 

	0.61 
	0.61 

	77.52 
	77.52 

	4712.21 
	4712.21 

	183.82 
	183.82 

	352.54 
	352.54 


	Estimated annual average hourly pedestrians (AAHP) 
	Estimated annual average hourly pedestrians (AAHP) 
	Estimated annual average hourly pedestrians (AAHP) 

	0.04 
	0.04 

	4.84 
	4.84 

	280.72 
	280.72 

	11.14 
	11.14 

	21.63 
	21.63 


	00:00–02:59 
	00:00–02:59 
	00:00–02:59 

	0.00 
	0.00 

	0.43 
	0.43 

	46.86 
	46.86 

	1.58 
	1.58 

	3.98 
	3.98 


	03:00–05:59 
	03:00–05:59 
	03:00–05:59 

	0.00 
	0.00 

	0.49 
	0.49 

	53.81 
	53.81 

	1.41 
	1.41 

	3.65 
	3.65 


	06:00–08:59 
	06:00–08:59 
	06:00–08:59 

	0.01 
	0.01 

	4.85 
	4.85 

	269.93 
	269.93 

	10.19 
	10.19 

	19.38 
	19.38 


	09:00–11:59 
	09:00–11:59 
	09:00–11:59 

	0.05 
	0.05 

	5.84 
	5.84 

	418.02 
	418.02 

	14.53 
	14.53 

	30.99 
	30.99 


	12:00–14:59 
	12:00–14:59 
	12:00–14:59 

	0.04 
	0.04 

	8.31 
	8.31 

	536.79 
	536.79 

	19.70 
	19.70 

	41.19 
	41.19 


	15:00–17:59 
	15:00–17:59 
	15:00–17:59 

	0.09 
	0.09 

	9.69 
	9.69 

	487.00 
	487.00 

	21.52 
	21.52 

	41.51 
	41.51 


	18:00–20:59 
	18:00–20:59 
	18:00–20:59 

	0.05 
	0.05 

	5.46 
	5.46 

	366.67 
	366.67 

	14.00 
	14.00 

	28.76 
	28.76 


	21:00–23:59 
	21:00–23:59 
	21:00–23:59 

	0.01 
	0.01 

	2.26 
	2.26 

	135.23 
	135.23 

	6.16 
	6.16 

	12.34 
	12.34 




	 
	We have also visualized AADP and AAHP pedestrian crossing volumes on a map. To do this, we chose to use ArcGIS Online and create an online web map. The “Estimated Pedestrian Volumes at Signalized Intersections (1,494) in Utah” is available for public viewing here: 
	We have also visualized AADP and AAHP pedestrian crossing volumes on a map. To do this, we chose to use ArcGIS Online and create an online web map. The “Estimated Pedestrian Volumes at Signalized Intersections (1,494) in Utah” is available for public viewing here: 
	https://arcg.is/0S84Wf
	https://arcg.is/0S84Wf

	. A direct link to the map itself is here: 
	https://arcg.is/1aTT4f
	https://arcg.is/1aTT4f

	. A screenshot of the map showing overall (any day) estimated AADP volumes for traffic signals in Salt Lake County is shown in 
	Figure 3-2
	Figure 3-2

	.  

	 
	 
	 
	 
	 
	Figure




	Figure 3-2: Estimated Annual Average Daily Pedestrian (AADP) Volumes at Traffic Signals in Salt Lake County, Utah 
	 
	3.3  Built Environment Data 
	Neighborhood built environment variables were measured for two different buffer widths—½-mile and ¼-mile—in a belief that the number of pedestrians may depend on the neighborhood environment at different scales. For example, the influence of road traffic volume on pedestrian activity may only be significant over a short distance while that of street network connectivity may be more extensive. A quarter-mile and a half-mile were selected as a standard 
	walking distance beyond which walk frequency drops off rapidly; they are used in most travel behavior literature (Ewing and Clemente, 2013; Nagel et al., 2008). Thus, using the “Network Analyst” tool in the ArcGIS Pro software, we created street network-based buffers by ½-mile and ¼-mile for every signalized intersection.  
	For the predictors of pedestrian signal activity, we measured “D” variables—density, diversity, design, destination accessibility, and distance to transit—as well as socioeconomic factors. For density variables, we measured population density (number of 1,000 people per square mile) and employment density (number of 1,000 jobs per square mile). The population data came from the American Community Survey (ACS) 2013-2017 at the Census block group level, and the employment data (2017) were collected from the L
	For a transit variable, we measured the number of transit stops in each buffer area. Transit stop location data in 2019 was available at OpenMobilityData (https://transitfeeds.com/) as a form of General Transit Feed Specification (GTFS). Also, two gross measures of street network design were computed, using intersection location data provided by the Metropolitan Research Center at the University of Utah. Intersection density (a measure of the block size) was computed as the number of intersections within a 
	Three demographic variables were also included—average household size, median household income, and average vehicle ownership—for block groups intersecting with the buffer. We hypothesized that more affluent residents with more vehicles available might walk less and drive more, while bigger households might walk more (Ewing et al., 2015; Owen et al., 
	2007). Data for demographic measures were gathered from the ACS (2017 5-year estimates) and assigned to the buffer using the spatial apportioning technique described above. Lastly, as a measure of traffic safety, we included road types for roads near the intersection. Road types were divided into three categories based on the cartographic code of road centerline data, provided by UDOT: highways (interstates, US and state highways, and associated ramps), major roads (“major local roads” such as arterials), a
	Table 3-2
	Table 3-2
	Table 3-2

	 shows descriptive statistics for the built environment variables. Within a given buffer width, all correlations between these variables were low to moderate (< 0.55) except for a negative correlation between residential and commercial land uses (-0.75). Also, the highest variance inflation factor (VIF) values in the regression models were lower than 5. Therefore, we conclude that multicollinearity among independent variables was not an issue. 

	Table 3-2: Descriptive Statistics for Independent Variables 
	 
	 
	 
	 
	 

	¼-mile 
	¼-mile 

	½-mile 
	½-mile 



	Variable 
	Variable 
	Variable 
	Variable 

	Mean 
	Mean 

	SD 
	SD 

	Mean 
	Mean 

	SD 
	SD 


	Population density (1,000 per sq. mi.) 
	Population density (1,000 per sq. mi.) 
	Population density (1,000 per sq. mi.) 

	4.39 
	4.39 

	2.80 
	2.80 

	4.44 
	4.44 

	2.55 
	2.55 


	Employment density (1,000 per sq. mi.) 
	Employment density (1,000 per sq. mi.) 
	Employment density (1,000 per sq. mi.) 

	5.60 
	5.60 

	8.10 
	8.10 

	4.85 
	4.85 

	6.31 
	6.31 


	Household size (average) 
	Household size (average) 
	Household size (average) 

	3.09 
	3.09 

	1.09 
	1.09 

	3.10 
	3.10 

	0.98 
	0.98 


	Household income ($1,000) 
	Household income ($1,000) 
	Household income ($1,000) 

	59.75 
	59.75 

	23.21 
	23.21 

	60.27 
	60.27 

	22.40 
	22.40 


	Vehicle ownership 
	Vehicle ownership 
	Vehicle ownership 

	1.68 
	1.68 

	0.51 
	0.51 

	1.69 
	1.69 

	0.47 
	0.47 


	% residential land use 
	% residential land use 
	% residential land use 

	31.02 
	31.02 

	22.72 
	22.72 

	37.17 
	37.17 

	21.37 
	21.37 


	% commercial land use 
	% commercial land use 
	% commercial land use 

	29.38 
	29.38 

	20.11 
	20.11 

	24.74 
	24.74 

	16.86 
	16.86 


	Intersection density (per sq. mi.) 
	Intersection density (per sq. mi.) 
	Intersection density (per sq. mi.) 

	97.97 
	97.97 

	49.01 
	49.01 

	100.32 
	100.32 

	38.86 
	38.86 


	% 4-way intersections 
	% 4-way intersections 
	% 4-way intersections 

	28.46 
	28.46 

	21.88 
	21.88 

	25.79 
	25.79 

	16.61 
	16.61 


	# schools 
	# schools 
	# schools 

	0.30 
	0.30 

	0.62 
	0.62 

	0.92 
	0.92 

	1.18 
	1.18 


	# places of worship 
	# places of worship 
	# places of worship 

	0.52 
	0.52 

	0.80 
	0.80 

	1.79 
	1.79 

	1.84 
	1.84 


	# transit stops 
	# transit stops 
	# transit stops 

	4.81 
	4.81 

	3.94 
	3.94 

	12.71 
	12.71 

	9.93 
	9.93 


	Park acreage 
	Park acreage 
	Park acreage 

	1.46 
	1.46 

	3.59 
	3.59 

	5.54 
	5.54 

	9.10 
	9.10 




	 
	3.4  Summary 
	The outcome data (dependent variables) are pedestrian crossing volumes, estimated from traffic signal data. To obtain these volumes, we used one year of ATSPM data (July 2017 
	through June 2018) at 1,494 signalized intersections in the six most populous Utah counties and applied the factoring methods developed in the Phase I project (Singleton et al., 2020). We then calculated the average annual daily and hourly pedestrian (AADP, AAHP) volumes overall and for weekdays vs. weekends and each three-hour period during the day. The input data (independent variables) are measures of the locations surrounding each signal related to land use, the built environment, the transportation sys
	 
	4.0  DATA EVALUATION 
	4.1  Overview 
	This chapter reports on data evaluation aspects, including results of the direct-demand models of daily and hourly pedestrian volumes, model validation results, and model application and visualization. 
	4.2  Results for Annual Average Daily Pedestrians by Day of Week 
	Table 4-1
	Table 4-1
	Table 4-1

	 shows three models for daily pedestrian activity (AADP) for all days, weekdays, and weekends, respectively. Lambda represents a coefficient on the spatially correlated errors (Anselin and Rey, 2010): it has a positive effect and is statistically significant in all models. 

	Table 4-1: Model Results, Annual Average Daily Pedestrians  
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 

	Day of week (AADP) 
	Day of week (AADP) 



	 
	 
	 
	 

	All days 
	All days 

	Mon–Fri 
	Mon–Fri 

	Sat–Sun 
	Sat–Sun 


	Variable 
	Variable 
	Variable 

	B 
	B 

	SE 
	SE 

	siga 
	siga 

	B 
	B 

	SE 
	SE 

	siga 
	siga 

	B 
	B 

	SE 
	SE 

	siga 
	siga 


	(Intercept) 
	(Intercept) 
	(Intercept) 

	2.747 
	2.747 

	0.234 
	0.234 

	* 
	* 

	2.897 
	2.897 

	0.235 
	0.235 

	* 
	* 

	2.275 
	2.275 

	0.242 
	0.242 

	* 
	* 


	Population density (½-mile)b 
	Population density (½-mile)b 
	Population density (½-mile)b 

	0.326 
	0.326 

	0.059 
	0.059 

	* 
	* 

	0.344 
	0.344 

	0.059 
	0.059 

	* 
	* 

	0.373 
	0.373 

	0.061 
	0.061 

	* 
	* 


	Employment density (¼-mile)b 
	Employment density (¼-mile)b 
	Employment density (¼-mile)b 

	0.124 
	0.124 

	0.028 
	0.028 

	* 
	* 

	0.136 
	0.136 

	0.028 
	0.028 

	* 
	* 

	0.070 
	0.070 

	0.029 
	0.029 

	* 
	* 


	Household size (¼-mile)b 
	Household size (¼-mile)b 
	Household size (¼-mile)b 

	0.418 
	0.418 

	0.102 
	0.102 

	* 
	* 

	0.452 
	0.452 

	0.103 
	0.103 

	* 
	* 

	0.146 
	0.146 

	0.106 
	0.106 

	 
	 


	Household income (½-mile) 
	Household income (½-mile) 
	Household income (½-mile) 

	-0.010 
	-0.010 

	0.002 
	0.002 

	* 
	* 

	-0.010 
	-0.010 

	0.002 
	0.002 

	* 
	* 

	-0.008 
	-0.008 

	0.002 
	0.002 

	* 
	* 


	Vehicle ownership (½-mile) 
	Vehicle ownership (½-mile) 
	Vehicle ownership (½-mile) 

	-0.198 
	-0.198 

	0.072 
	0.072 

	* 
	* 

	-0.217 
	-0.217 

	0.073 
	0.073 

	* 
	* 

	-0.103 
	-0.103 

	0.075 
	0.075 

	 
	 


	% residential (¼-mile) 
	% residential (¼-mile) 
	% residential (¼-mile) 

	0.006 
	0.006 

	0.002 
	0.002 

	* 
	* 

	0.006 
	0.006 

	0.002 
	0.002 

	* 
	* 

	0.006 
	0.006 

	0.002 
	0.002 

	* 
	* 


	% commercial (¼-mile) 
	% commercial (¼-mile) 
	% commercial (¼-mile) 

	0.019 
	0.019 

	0.002 
	0.002 

	* 
	* 

	0.019 
	0.019 

	0.002 
	0.002 

	* 
	* 

	0.022 
	0.022 

	0.002 
	0.002 

	* 
	* 


	Intersection density (½-mile) 
	Intersection density (½-mile) 
	Intersection density (½-mile) 

	0.004 
	0.004 

	0.001 
	0.001 

	* 
	* 

	0.004 
	0.004 

	0.001 
	0.001 

	* 
	* 

	0.004 
	0.004 

	0.001 
	0.001 

	* 
	* 


	% 4-way intersections (½-mile) 
	% 4-way intersections (½-mile) 
	% 4-way intersections (½-mile) 

	0.006 
	0.006 

	0.002 
	0.002 

	* 
	* 

	0.006 
	0.006 

	0.002 
	0.002 

	* 
	* 

	0.008 
	0.008 

	0.002 
	0.002 

	* 
	* 


	# schools (¼-mile) 
	# schools (¼-mile) 
	# schools (¼-mile) 

	0.155 
	0.155 

	0.039 
	0.039 

	* 
	* 

	0.170 
	0.170 

	0.039 
	0.039 

	* 
	* 

	0.065 
	0.065 

	0.041 
	0.041 

	 
	 


	# places of worship (½-mile) 
	# places of worship (½-mile) 
	# places of worship (½-mile) 

	0.060 
	0.060 

	0.020 
	0.020 

	* 
	* 

	0.054 
	0.054 

	0.021 
	0.021 

	* 
	* 

	0.080 
	0.080 

	0.021 
	0.021 

	* 
	* 


	# transit stops (¼-mile) 
	# transit stops (¼-mile) 
	# transit stops (¼-mile) 

	0.068 
	0.068 

	0.008 
	0.008 

	* 
	* 

	0.069 
	0.069 

	0.008 
	0.008 

	* 
	* 

	0.066 
	0.066 

	0.008 
	0.008 

	* 
	* 


	Park acreage (½-mile)b 
	Park acreage (½-mile)b 
	Park acreage (½-mile)b 

	0.022 
	0.022 

	0.007 
	0.007 

	* 
	* 

	0.023 
	0.023 

	0.007 
	0.007 

	* 
	* 

	0.025 
	0.025 

	0.007 
	0.007 

	* 
	* 


	Road type (major road dummy) 
	Road type (major road dummy) 
	Road type (major road dummy) 

	0.242 
	0.242 

	0.053 
	0.053 

	* 
	* 

	0.245 
	0.245 

	0.053 
	0.053 

	* 
	* 

	0.245 
	0.245 

	0.055 
	0.055 

	* 
	* 


	Model diagnosticsc 
	Model diagnosticsc 
	Model diagnosticsc 

	Lambda: 0.49 
	Lambda: 0.49 
	AIC: 3772 

	Lambda: 0.49 
	Lambda: 0.49 
	AIC: 3784 

	Lambda: 0.46 
	Lambda: 0.46 
	AIC: 3909.7 


	a *: p<.05; ~: p<.1 
	a *: p<.05; ~: p<.1 
	a *: p<.05; ~: p<.1 
	b log-transformed 
	c all Lambdas are p<.001 

	 
	 




	 
	Most built environment variables—population density, employment density, % residential parcels, % commercial parcels, intersection density, % 4-way intersections, schools, places of worship, transit stops, and park acreage—were statistically significant at a p<.05 level and positively associated with the estimated average daily volumes of pedestrians. Among demographic variables, pedestrian volume increased with average household size and decreased with median household income and average vehicle ownership 
	Notable day-of-week differences were also found. As expected, the number of schools near the intersection was not significant in the weekend model; so were two other demographic variables: household size and vehicle ownership. Albeit statistically significant across the three daily models, a higher coefficient for the employment density variable was found on weekdays while the population density variable had a bigger size effect on weekends. Also, the coefficient for places of worship was higher in the week
	4.3  Results for Annual Average Hourly Pedestrians by Time of Day 
	Table 4-2
	Table 4-2
	Table 4-2

	 shows eight models for hourly pedestrian activity (AAHP) for specific times of day, in 3-hour windows from midnight to midnight. Lambda values had a positive effect and were statistically significant in all models.  

	Table 4-2: Model Results, Annual Average Hourly Pedestrians 
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 

	Time of day (AAHP) 
	Time of day (AAHP) 



	 
	 
	 
	 

	12am–3am 
	12am–3am 

	3am–6am 
	3am–6am 

	6am–9am 
	6am–9am 

	9am–12pm 
	9am–12pm 


	Variable 
	Variable 
	Variable 

	B 
	B 

	SE 
	SE 

	siga 
	siga 

	B 
	B 

	SE 
	SE 

	siga 
	siga 

	B 
	B 

	SE 
	SE 

	siga 
	siga 

	B 
	B 

	SE 
	SE 

	siga 
	siga 


	(Intercept) 
	(Intercept) 
	(Intercept) 

	-1.203 
	-1.203 

	0.262 
	0.262 

	* 
	* 

	-0.965 
	-0.965 

	0.254 
	0.254 

	* 
	* 

	-0.013 
	-0.013 

	0.246 
	0.246 

	 
	 

	-0.175 
	-0.175 

	0.230 
	0.230 

	 
	 


	Population density (½-mile)b 
	Population density (½-mile)b 
	Population density (½-mile)b 

	0.499 
	0.499 

	0.066 
	0.066 

	* 
	* 

	0.317 
	0.317 

	0.064 
	0.064 

	* 
	* 

	0.252 
	0.252 

	0.062 
	0.062 

	* 
	* 

	0.293 
	0.293 

	0.058 
	0.058 

	* 
	* 


	Employment density (¼-mile)b 
	Employment density (¼-mile)b 
	Employment density (¼-mile)b 

	0.061 
	0.061 

	0.031 
	0.031 

	~ 
	~ 

	0.034 
	0.034 

	0.031 
	0.031 

	 
	 

	0.078 
	0.078 

	0.029 
	0.029 

	* 
	* 

	0.129 
	0.129 

	0.027 
	0.027 

	* 
	* 


	Household size (¼-mile)b 
	Household size (¼-mile)b 
	Household size (¼-mile)b 

	0.092 
	0.092 

	0.115 
	0.115 

	 
	 

	0.266 
	0.266 

	0.111 
	0.111 

	* 
	* 

	0.420 
	0.420 

	0.107 
	0.107 

	* 
	* 

	0.377 
	0.377 

	0.100 
	0.100 

	* 
	* 


	Household income (½-mile) 
	Household income (½-mile) 
	Household income (½-mile) 

	-0.016 
	-0.016 

	0.002 
	0.002 

	* 
	* 

	-0.013 
	-0.013 

	0.002 
	0.002 

	* 
	* 

	-0.008 
	-0.008 

	0.002 
	0.002 

	* 
	* 

	-0.009 
	-0.009 

	0.002 
	0.002 

	* 
	* 


	Vehicle ownership (½-mile) 
	Vehicle ownership (½-mile) 
	Vehicle ownership (½-mile) 

	-0.149 
	-0.149 

	0.081 
	0.081 

	~ 
	~ 

	-0.236 
	-0.236 

	0.078 
	0.078 

	* 
	* 

	-0.270 
	-0.270 

	0.076 
	0.076 

	* 
	* 

	-0.188 
	-0.188 

	0.071 
	0.071 

	* 
	* 


	% residential (¼-mile) 
	% residential (¼-mile) 
	% residential (¼-mile) 

	-0.002 
	-0.002 

	0.002 
	0.002 

	 
	 

	-0.003 
	-0.003 

	0.002 
	0.002 

	 
	 

	0.008 
	0.008 

	0.002 
	0.002 

	* 
	* 

	0.004 
	0.004 

	0.002 
	0.002 

	~ 
	~ 


	% commercial (¼-mile) 
	% commercial (¼-mile) 
	% commercial (¼-mile) 

	0.013 
	0.013 

	0.002 
	0.002 

	* 
	* 

	0.010 
	0.010 

	0.002 
	0.002 

	* 
	* 

	0.013 
	0.013 

	0.002 
	0.002 

	* 
	* 

	0.019 
	0.019 

	0.002 
	0.002 

	* 
	* 


	Intersection density (½-mile) 
	Intersection density (½-mile) 
	Intersection density (½-mile) 

	0.001 
	0.001 

	0.001 
	0.001 

	 
	 

	0.002 
	0.002 

	0.001 
	0.001 

	~ 
	~ 

	0.003 
	0.003 

	0.001 
	0.001 

	* 
	* 

	0.004 
	0.004 

	0.001 
	0.001 

	* 
	* 


	% 4-way intersections (½-mile) 
	% 4-way intersections (½-mile) 
	% 4-way intersections (½-mile) 

	0.005 
	0.005 

	0.002 
	0.002 

	* 
	* 

	0.002 
	0.002 

	0.002 
	0.002 

	 
	 

	0.005 
	0.005 

	0.002 
	0.002 

	* 
	* 

	0.007 
	0.007 

	0.002 
	0.002 

	* 
	* 


	# schools (¼-mile) 
	# schools (¼-mile) 
	# schools (¼-mile) 

	0.008 
	0.008 

	0.044 
	0.044 

	 
	 

	-0.016 
	-0.016 

	0.043 
	0.043 

	 
	 

	0.244 
	0.244 

	0.040 
	0.040 

	* 
	* 

	0.115 
	0.115 

	0.038 
	0.038 

	* 
	* 


	# places of worship (½-mile) 
	# places of worship (½-mile) 
	# places of worship (½-mile) 

	0.052 
	0.052 

	0.023 
	0.023 

	* 
	* 

	0.040 
	0.040 

	0.022 
	0.022 

	~ 
	~ 

	0.049 
	0.049 

	0.021 
	0.021 

	* 
	* 

	0.069 
	0.069 

	0.020 
	0.020 

	* 
	* 


	# transit stops (¼-mile) 
	# transit stops (¼-mile) 
	# transit stops (¼-mile) 

	0.047 
	0.047 

	0.009 
	0.009 

	* 
	* 

	0.046 
	0.046 

	0.009 
	0.009 

	* 
	* 

	0.060 
	0.060 

	0.008 
	0.008 

	* 
	* 

	0.074 
	0.074 

	0.008 
	0.008 

	* 
	* 


	Park acreage (½-mile)b 
	Park acreage (½-mile)b 
	Park acreage (½-mile)b 

	0.017 
	0.017 

	0.007 
	0.007 

	* 
	* 

	0.016 
	0.016 

	0.007 
	0.007 

	* 
	* 

	0.020 
	0.020 

	0.007 
	0.007 

	* 
	* 

	0.019 
	0.019 

	0.006 
	0.006 

	* 
	* 


	Road type (major road dummy) 
	Road type (major road dummy) 
	Road type (major road dummy) 

	0.203 
	0.203 

	0.059 
	0.059 

	* 
	* 

	0.258 
	0.258 

	0.058 
	0.058 

	* 
	* 

	0.258 
	0.258 

	0.055 
	0.055 

	* 
	* 

	0.230 
	0.230 

	0.051 
	0.051 

	* 
	* 


	Model diagnosticsc 
	Model diagnosticsc 
	Model diagnosticsc 

	Lambda: 0.47 
	Lambda: 0.47 
	AIC: 4135.2 

	Lambda: 0.44 
	Lambda: 0.44 
	AIC: 4070.8 

	Lambda: 0.51 
	Lambda: 0.51 
	AIC: 3887.7 

	Lambda: 0.51 
	Lambda: 0.51 
	AIC: 3697.0 


	 
	 
	 

	 
	 


	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 

	Time of day (AAHP) 
	Time of day (AAHP) 


	 
	 
	 

	12pm–3pm 
	12pm–3pm 

	3pm–6pm 
	3pm–6pm 

	6pm–9pm 
	6pm–9pm 

	9pm–12am 
	9pm–12am 


	Variable 
	Variable 
	Variable 

	B 
	B 

	SE 
	SE 

	siga 
	siga 

	B 
	B 

	SE 
	SE 

	siga 
	siga 

	B 
	B 

	SE 
	SE 

	siga 
	siga 

	B 
	B 

	SE 
	SE 

	siga 
	siga 


	(Intercept) 
	(Intercept) 
	(Intercept) 

	0.029 
	0.029 

	0.231 
	0.231 

	 
	 

	0.216 
	0.216 

	0.233 
	0.233 

	 
	 

	-0.420 
	-0.420 

	0.237 
	0.237 

	~ 
	~ 

	-0.826 
	-0.826 

	0.241 
	0.241 

	* 
	* 


	Population density (½-mile)b 
	Population density (½-mile)b 
	Population density (½-mile)b 

	0.334 
	0.334 

	0.058 
	0.058 

	* 
	* 

	0.343 
	0.343 

	0.059 
	0.059 

	* 
	* 

	0.388 
	0.388 

	0.060 
	0.060 

	* 
	* 

	0.498 
	0.498 

	0.061 
	0.061 

	* 
	* 


	Employment density (¼-mile)b 
	Employment density (¼-mile)b 
	Employment density (¼-mile)b 

	0.147 
	0.147 

	0.028 
	0.028 

	* 
	* 

	0.121 
	0.121 

	0.028 
	0.028 

	* 
	* 

	0.112 
	0.112 

	0.028 
	0.028 

	* 
	* 

	0.116 
	0.116 

	0.029 
	0.029 

	* 
	* 


	Household size (¼-mile)b 
	Household size (¼-mile)b 
	Household size (¼-mile)b 

	0.426 
	0.426 

	0.101 
	0.101 

	* 
	* 

	0.444 
	0.444 

	0.102 
	0.102 

	* 
	* 

	0.327 
	0.327 

	0.104 
	0.104 

	* 
	* 

	0.257 
	0.257 

	0.105 
	0.105 

	* 
	* 


	Household income (½-mile) 
	Household income (½-mile) 
	Household income (½-mile) 

	-0.010 
	-0.010 

	0.002 
	0.002 

	* 
	* 

	-0.010 
	-0.010 

	0.002 
	0.002 

	* 
	* 

	-0.010 
	-0.010 

	0.002 
	0.002 

	* 
	* 

	-0.013 
	-0.013 

	0.002 
	0.002 

	* 
	* 


	Vehicle ownership (½-mile) 
	Vehicle ownership (½-mile) 
	Vehicle ownership (½-mile) 

	-0.169 
	-0.169 

	0.071 
	0.071 

	* 
	* 

	-0.191 
	-0.191 

	0.072 
	0.072 

	* 
	* 

	-0.131 
	-0.131 

	0.073 
	0.073 

	~ 
	~ 

	-0.133 
	-0.133 

	0.074 
	0.074 

	~ 
	~ 


	% residential (¼-mile) 
	% residential (¼-mile) 
	% residential (¼-mile) 

	0.005 
	0.005 

	0.002 
	0.002 

	* 
	* 

	0.006 
	0.006 

	0.002 
	0.002 

	* 
	* 

	0.005 
	0.005 

	0.002 
	0.002 

	* 
	* 

	0.002 
	0.002 

	0.002 
	0.002 

	 
	 


	% commercial (¼-mile) 
	% commercial (¼-mile) 
	% commercial (¼-mile) 

	0.020 
	0.020 

	0.002 
	0.002 

	* 
	* 

	0.019 
	0.019 

	0.002 
	0.002 

	* 
	* 

	0.021 
	0.021 

	0.002 
	0.002 

	* 
	* 

	0.018 
	0.018 

	0.002 
	0.002 

	* 
	* 


	Intersection density (½-mile) 
	Intersection density (½-mile) 
	Intersection density (½-mile) 

	0.004 
	0.004 

	0.001 
	0.001 

	* 
	* 

	0.004 
	0.004 

	0.001 
	0.001 

	* 
	* 

	0.004 
	0.004 

	0.001 
	0.001 

	* 
	* 

	0.003 
	0.003 

	0.001 
	0.001 

	* 
	* 


	% 4-way intersections (½-mile) 
	% 4-way intersections (½-mile) 
	% 4-way intersections (½-mile) 

	0.006 
	0.006 

	0.002 
	0.002 

	* 
	* 

	0.006 
	0.006 

	0.002 
	0.002 

	* 
	* 

	0.008 
	0.008 

	0.002 
	0.002 

	* 
	* 

	0.007 
	0.007 

	0.002 
	0.002 

	* 
	* 


	# schools (¼-mile) 
	# schools (¼-mile) 
	# schools (¼-mile) 

	0.167 
	0.167 

	0.039 
	0.039 

	* 
	* 

	0.159 
	0.159 

	0.039 
	0.039 

	* 
	* 

	0.079 
	0.079 

	0.039 
	0.039 

	* 
	* 

	0.030 
	0.030 

	0.040 
	0.040 

	 
	 


	# places of worship (½-mile) 
	# places of worship (½-mile) 
	# places of worship (½-mile) 

	0.068 
	0.068 

	0.020 
	0.020 

	* 
	* 

	0.058 
	0.058 

	0.020 
	0.020 

	* 
	* 

	0.071 
	0.071 

	0.021 
	0.021 

	* 
	* 

	0.064 
	0.064 

	0.021 
	0.021 

	* 
	* 


	# transit stops (¼-mile) 
	# transit stops (¼-mile) 
	# transit stops (¼-mile) 

	0.074 
	0.074 

	0.008 
	0.008 

	* 
	* 

	0.072 
	0.072 

	0.008 
	0.008 

	* 
	* 

	0.069 
	0.069 

	0.008 
	0.008 

	* 
	* 

	0.062 
	0.062 

	0.008 
	0.008 

	* 
	* 


	Park acreage (½-mile)b 
	Park acreage (½-mile)b 
	Park acreage (½-mile)b 

	0.022 
	0.022 

	0.006 
	0.006 

	* 
	* 

	0.021 
	0.021 

	0.007 
	0.007 

	* 
	* 

	0.028 
	0.028 

	0.007 
	0.007 

	* 
	* 

	0.025 
	0.025 

	0.007 
	0.007 

	* 
	* 


	Road type (major road dummy) 
	Road type (major road dummy) 
	Road type (major road dummy) 

	0.220 
	0.220 

	0.052 
	0.052 

	* 
	* 

	0.259 
	0.259 

	0.052 
	0.052 

	* 
	* 

	0.220 
	0.220 

	0.053 
	0.053 

	* 
	* 

	0.202 
	0.202 

	0.054 
	0.054 

	* 
	* 


	Model diagnosticsc 
	Model diagnosticsc 
	Model diagnosticsc 

	Lambda: 0.48 
	Lambda: 0.48 
	AIC: 3741.6 

	Lambda: 0.48 
	Lambda: 0.48 
	AIC: 3764.2 

	Lambda: 0.49 
	Lambda: 0.49 
	AIC: 3810.5 

	Lambda: 0.49 
	Lambda: 0.49 
	AIC: 3857.6 


	a *: p<.05; ~: p<.1 
	a *: p<.05; ~: p<.1 
	a *: p<.05; ~: p<.1 
	b log-transformed 
	c all Lambdas are p<.001 

	 
	 




	 
	Again, most built environmental variables were positively associated with the pedestrian volumes across the day at a p<.05 significance level: population density, employment density, % commercial parcels, intersection density, % 4-way intersections, places of worship, transit stops, and park acreage. Average household size (positively), median household income (negatively), 
	and vehicle ownership (negatively) were also statistically significant in most time-of-day models of pedestrian volume. Higher pedestrian volumes were found for intersections on major roads, as opposed to just highways or local road types.  
	Some time-of-day differences were also found. The number of schools near an intersection was positively associated with pedestrian activity, but only during the daytime (6am–9pm). Residential land use became statistically non-significant during the nighttime (in the after-9pm or before-6am models). The slope coefficients of population density were higher during the nighttime (after-6pm models) while those of employment density were higher during the daytime (models for 9am–3pm). The coefficient for being on
	4.4  Overall Results 
	Table 4-3
	Table 4-3
	Table 4-3

	 shows the direction of significant effects for all independent variables in the three AADP and eight AADH models. Results from both the daily and hourly models confirm theoretically consistent relationships between built environment measures and pedestrian activity, as identified in 
	Table 2-2
	Table 2-2

	 through the literature review. In general, more pedestrian activity was found in locations with greater density (greater population and employment density, higher shares of residential and commercial land uses), more transit access (greater transit stop density), more connected street networks (greater intersection density, higher share of four-way intersections), and closer to major destinations (parks, schools, and places of worship).  

	Results from the day-of-week and time-of-day models also highlighted important temporal variations in built environment relationships with walking. Schools were significant and influential only when in session: on weekdays and during daytime hours, not on weekends or at night. As expected, employment density was less influential and/or not significant on weekends and at night, while residential density had larger coefficients at night and on weekends.  
	Table 4-3: Model Results, Overall 
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 
	n=1,494 signals 

	Day of week (AADP) 
	Day of week (AADP) 

	Time of day (AAHP) 
	Time of day (AAHP) 



	Variable 
	Variable 
	Variable 
	Variable 

	All days 
	All days 

	Mon–Fri 
	Mon–Fri 

	Sat–Sun 
	Sat–Sun 

	12am–3am 
	12am–3am 

	3am–6am 
	3am–6am 

	6am–9am 
	6am–9am 

	9am–12pm 
	9am–12pm 

	12pm–3pm 
	12pm–3pm 

	3pm–6pm 
	3pm–6pm 

	6pm–9pm 
	6pm–9pm 

	9pm–12am 
	9pm–12am 


	Population density (½-mile)b 
	Population density (½-mile)b 
	Population density (½-mile)b 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	Employment density (¼-mile)b 
	Employment density (¼-mile)b 
	Employment density (¼-mile)b 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	 
	 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	Household size (¼-mile)b 
	Household size (¼-mile)b 
	Household size (¼-mile)b 

	+ 
	+ 

	+ 
	+ 

	 
	 

	 
	 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	Household income (½-mile) 
	Household income (½-mile) 
	Household income (½-mile) 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 


	Vehicle ownership (½-mile) 
	Vehicle ownership (½-mile) 
	Vehicle ownership (½-mile) 

	− 
	− 

	− 
	− 

	 
	 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 

	− 
	− 


	% residential (¼-mile) 
	% residential (¼-mile) 
	% residential (¼-mile) 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	 
	 

	 
	 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	 
	 


	% commercial (¼-mile) 
	% commercial (¼-mile) 
	% commercial (¼-mile) 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	Intersection density (½-mile) 
	Intersection density (½-mile) 
	Intersection density (½-mile) 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	 
	 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	% 4-way intersections (½-mile) 
	% 4-way intersections (½-mile) 
	% 4-way intersections (½-mile) 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	 
	 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	# schools (¼-mile) 
	# schools (¼-mile) 
	# schools (¼-mile) 

	+ 
	+ 

	+ 
	+ 

	 
	 

	 
	 

	 
	 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	 
	 


	# places of worship (½-mile) 
	# places of worship (½-mile) 
	# places of worship (½-mile) 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	# transit stops (¼-mile) 
	# transit stops (¼-mile) 
	# transit stops (¼-mile) 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	Park acreage (½-mile)b 
	Park acreage (½-mile)b 
	Park acreage (½-mile)b 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 


	Road type (major road dummy) 
	Road type (major road dummy) 
	Road type (major road dummy) 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 

	+ 
	+ 




	Notes: + = significant positive association, − = significant negative association, blank = no significant association.  
	 
	4.5  Model Validation Results 
	After fitting the models with the full data, we assessed the predictive power of the nine models using 10-fold cross-validation. Intersections (n=1,494) were randomly split into ten equal-sized groups. The validation data set (10% of the data) was used to validate the model, which was fitted using the other 90% of the data through a spatial error model. As a result of the 10-fold cross-validation, we obtained average RMSE, MAE, and MAPE for each model. From the cross-validation results, the average RMSEs ra
	4.6  Model Application and Visualizations 
	The ultimate objective of developing direct-demand models of pedestrian volumes is to utilize their ability to predict pedestrian volumes in locations where data on pedestrians do not exist. For this project, the objective was to predict pedestrian volumes for unsignalized intersections, to supplement the traffic signal-based estimates of pedestrian volumes at signalized intersections. Therefore, we applied the models presented earlier in this chapter to around 62,000 unsignalized intersections with 3 or 4 
	The first step was to assemble all of the necessary data about those unsignalized intersections needed to apply the direct-demand pedestrian volume models. This information included the same built environment data as was assembled for signalized intersections, as described in Section 
	The first step was to assemble all of the necessary data about those unsignalized intersections needed to apply the direct-demand pedestrian volume models. This information included the same built environment data as was assembled for signalized intersections, as described in Section 
	3.3
	3.3

	: characteristics of land uses (residential and commercial), the built environment (population and employment density, schools, parks, places of worship), the transportation system (intersection density, transit stop density, percentage of four-way intersections, road type), and neighborhood demographics (household size, household income, and vehicle ownership). These measures were assembled from the same data sources (UDOT, Utah AGRC, US Census, etc.) and using the same methods (quarter-mile or half-mile n

	The next step was to apply the direct demand pedestrian volume models to the data assembled for the unsignalized intersections. We took the 12 models—three for AADP (all, weekday, weekend), and nine for AAHP (all, plus three-hour intervals throughout the day)—and applied each of them to all of the 62,336 unsignalized intersections. Thus, for each unsignalized intersection, we obtained an annual average prediction of daily and hourly pedestrian volumes for different days of the week and times of day.  
	The final step was to assemble our predicted pedestrian volumes and visualize them on a map. To do this, we chose to use ArcGIS Online and create an online web map. The “Predicted Pedestrian volumes at Intersections (62k) in Utah” is available for public viewing here: 
	The final step was to assemble our predicted pedestrian volumes and visualize them on a map. To do this, we chose to use ArcGIS Online and create an online web map. The “Predicted Pedestrian volumes at Intersections (62k) in Utah” is available for public viewing here: 
	https://arcg.is/0O8bOG
	https://arcg.is/0O8bOG

	. A direct link to the map itself is here: 
	https://arcg.is/0GO0Cv
	https://arcg.is/0GO0Cv

	. 

	Screenshots of the map showing overall (any day) predicted AADP volumes for different urban areas in Utah are shown in 
	Screenshots of the map showing overall (any day) predicted AADP volumes for different urban areas in Utah are shown in 
	Figure 4-1
	Figure 4-1

	. Screenshots of the map showing overall, weekday, and weekend predicted AADP volumes for one area in Utah are shown in 
	Figure 4-2
	Figure 4-2

	.  
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	Figure 4-1: Predicted Annual Average Daily Pedestrian (AADP) Volumes in Various Utah Urban Areas 
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	Figure 4-2: Predicted Annual Average Daily Pedestrian (AADP) Volumes for Various Weekdays 
	 
	4.7  Summary 
	Results from daily and hourly direct demand pedestrian volume models confirmed theoretically consistent relationships between built environment measures and pedestrian activity. In general, more pedestrian activity was found in locations with greater density, more transit access, more connected street networks, and closer to major destinations. Results also highlighted important temporal variations in built environment relationships with walking. Schools were significant and influential when in session: on 
	 
	5.0  CONCLUSIONS 
	5.1  Summary 
	To meet our study objective of examining relationships between the built environment and pedestrian activity, we developed direct-demand built environment models of daily and hourly pedestrian crossing volumes at signalized intersections using a novel data source: volumes estimated using pedestrian push-button events from high-resolution traffic signal controller logs. Based on our review of past research, we used log-linear regression and controlled spatial autocorrelation, and we examined traditional buil
	5.2  Findings 
	Indeed, all of our findings are consistent with theory and expectations (from past research) regarding links between walking and the built environment (see Table 2), which supports the validity of our pedestrian measures. Intersections with greater population and employment densities and higher percentages of nearby residential and commercial land uses saw more pedestrian activity (Ameli et al., 2015; Behnam and Patel, 1977; Ewing et al., 2016; Ewing and Clemente, 2013; Kim et al., 2019; Liu and Griswold, 2
	Fernandes, 2011; Park et al., 2019; Sung et al., 2013). Regarding sociodemographic characteristics, as has been found previously, pedestrian activity was greater in neighborhoods with larger household sizes (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Park et al., 2019). Overall, these results continue to support research-informed built environment interventions and land-use policies aimed at creating more walkable communities.  
	Our analysis was also able to uncover theoretically consistent relationships between walking and other built environmental attributes for which past research has more commonly found null or theoretically inconsistent findings. Signals in areas with greater street network connectivity had more pedestrian crossing events, which has been found in only a few prior studies for intersection density (Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019) and the percentage of four-way intersections (Miranda-Moreno
	The use of a continuously recorded pedestrian data source also allowed us to examine time-of-day and day-of-week variations in these built environment relationships that are not feasible to consider when using only short-duration pedestrian counts. Many factors had similar relationships with pedestrian activity throughout the week and across the day, but a few did not. Population density seemed to be most relevant (with a larger coefficient) on weekends and during evening hours, when we expect more people t
	than during the day. Conversely, employment density played a bigger role on weekdays and during daytime hours: a 10% increase in employment density would be expected to generate 1.3% more (1.100.136) daily pedestrians during weekdays, but only 0.7% more (1.100.070) during weekends. As expected, our models showed that intersections near schools had greater pedestrian activity, but only or especially when primary/secondary schools are in session: on weekdays and during morning and afternoon commuting hours. T
	5.3  Limitations and Challenges 
	Despite these contributions, a limitation of this work is the use of pedestrian volumes estimated from traffic signal data as opposed to observed pedestrian counts or crossing volumes. Previous research on pedestrian behavior and the utilization of pedestrian push-buttons at signals has found that rates vary across locations such as by signal type (Kutela and Tang, 2020), in different situations like the presence/absence of approaching motor vehicles (Foster et al., 2014), and by age, gender, and other pede
	Another limitation is that the locations where pedestrian signal data are available may not be entirely representative. These data are not available at signals without pedestrian detection: in our study, these included some high-pedestrian downtown intersections that operate without push-buttons, as well as a few intersections in heavily-industrial areas and isolated freeway interchanges. Also, signalized intersections tend to be more highly concentrated along larger, arterial roadways and in urban areas, s
	non-signalized intersections, and our data may capture more utilitarian walk trips. That said, more than 90% of Utah’s population lives in an urban area, and we did find more walking near parks. It could be advantageous to combine signal-based estimates of pedestrian volumes with data from permanent pedestrian counters on trails and in other more recreational contexts in order to improve the generalizability of direct-demand models. Overall, these methods may be most appropriate for moderately urban to subu
	Despite these limitations and opportunities for future work, we think our theoretically consistent findings about built environment relationships with walking—and our ability to detect day-of-week and time-of-day variations in those relationships—demonstrate the utility of traffic signal data sources for direct-demand pedestrian volume modeling. There are hundreds of thousands of traffic signals across the US (NTOC, 2012), many with pedestrian push-buttons (more than 85% in Utah). Also, many states and regi
	 
	6.0  RECOMMENDATIONS AND IMPLEMENTATION 
	6.1  Recommendations 
	An accurate prediction of pedestrian traffic volume is an important goal for urban and transportation planners. The estimated pedestrian volumes at all intersections in Utah, a major product of this research project, can help UDOT and other governmental agencies at the state, regional, and local levels in multiple ways.  
	First, we recommend using the estimated pedestrian volumes as a measure of pedestrian exposure in pedestrian safety analyses (e.g., pedestrian crash rates, pedestrian crash frequency models, pedestrian fatalities involving impaired road users) (Lee & Abdel-Aty, 2005). As previously mentioned, pedestrian volume data useful for pedestrian safety analysis is costly and time-intensive to measure directly, so model-estimated volumes offer a potentially useful source of data. Crash prediction models and predictiv
	Second, these pedestrian volumes can be used in various other analysis procedures. Multimodal level-of-service calculations—including for pedestrian level of service for signalized intersections, but also for street segments and stop-controlled intersections—require information on pedestrian flow rates (TRB, 2016). Our models of pedestrian traffic volumes can provide necessary information for these types of calculations. Also, transportation planners can relate the pedestrian volume at intersections to walk
	Third, the spatial and temporal distributions of pedestrian volume highlight certain areas to prioritize planning and development interventions. In addition to guiding development 
	patterns (see the next paragraph), those data also show where to invest and improve pedestrian infrastructures, such as infill sidewalks or pedestrian crossing treatments. For example, expected pedestrian volume (obtained from our model estimates) could be one criterion when evaluating and programming pedestrian-focused infrastructure projects so that investment is directed towards locations with the biggest impact. Places with higher anticipated pedestrian volumes could be required to install higher-qualit
	Fourth, our statistical models of daily and hourly pedestrian traffic volume support built environment interventions and land-use policies aimed at creating more walkable communities. There is a growing interest in creating active living and walk-friendly communities in order to improve health, reduce automobile dependence, and strengthen local economies. The first implication for planning practice is that context is essential in street vitality. To increase the density of population and employment and prom
	Finally, there are opportunities to improve upon our analysis through additional research. Future studies could examine seasonal variations in daily pedestrian activity at signalized interactions, which would consider effects due to weather variables such as temperature, precipitation, and wind (Runa and Singleton, 2021). Also, because pedestrian traffic volumes may not be linearly related to all built environment variables, future studies may use non-linear regression such as generalized additive models (P
	Diversifying data sources and using machine learning techniques can contribute to a more accurate prediction of pedestrian traffic volume across multiple parts of Utah. As we pointed out in the previous “5.3 Limitations and Challenges” section, some types of intersections do not have pedestrian signal data, which could hurt the generalizability of our models and resulting maps. Those include high-traffic downtown areas without push-buttons, industrial areas and isolated freeway interchanges, and rural areas
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